Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Convolutional Neural Networks for Mechanistic Driver Detection in Atrial Fibrillation

dc.contributor.authorRíos Muñoz, Gonzalo Ricardo
dc.contributor.authorFernández Avilés, Francisco
dc.contributor.authorArenal, Ángel
dc.date.accessioned2023-06-22T10:49:41Z
dc.date.available2023-06-22T10:49:41Z
dc.date.issued2022-04-11
dc.description.abstractThe maintaining and initiating mechanisms of atrial fibrillation (AF) remain controversial. Deep learning is emerging as a powerful tool to better understand AF and improve its treatment, which remains suboptimal. This paper aims to provide a solution to automatically identify rotational activity drivers in endocardial electrograms (EGMs) with convolutional recurrent neural networks (CRNNs). The CRNN model was compared with two other state-of-the-art methods (SimpleCNN and attention-based time-incremental convolutional neural network (ATI-CNN)) for different input signals (unipolar EGMs, bipolar EGMs, and unipolar local activation times), sampling frequencies, and signal lengths. The proposed CRNN obtained a detection score based on the Matthews correlation coefficient of 0.680, an ATI-CNN score of 0.401, and a SimpleCNN score of 0.118, with bipolar EGMs as input signals exhibiting better overall performance. In terms of signal length and sampling frequency, no significant differences were found. The proposed architecture opens the way for new ablation strategies and driver detection methods to better understand the AF problem and its treatment.
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipInstituto de Salud Carlos III (ISCIII)
dc.description.sponsorshipRicors–Red de Investigación Cooperativa Orientada a Resultados en Salud–RICORS TERAV
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73367
dc.identifier.doi10.3390/ijms23084216
dc.identifier.issn1422-0067
dc.identifier.officialurlhttps://doi.org/10.3390/ijms23084216
dc.identifier.relatedurlhttps://www.mdpi.com/1422-0067/23/8/4216/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71739
dc.issue.number8
dc.journal.titleInternational Journal of Molecular Sciences
dc.language.isoeng
dc.page.initial4216
dc.publisherMPDI
dc.relation.projectID(PI18/01895 and DTS21/00064); (RD16/0011/0029)
dc.relation.projectID(RD21.0017.0002)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordatrial fibrillation
dc.subject.keywordartificial intelligence
dc.subject.keywordrotors
dc.subject.keywordarrhythmias
dc.subject.keywordcardiology
dc.subject.keywordmachine learning
dc.subject.ucmCardiología
dc.subject.unesco3205.01 Cardiología
dc.titleConvolutional Neural Networks for Mechanistic Driver Detection in Atrial Fibrillation
dc.typejournal article
dc.volume.number23
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijms-23-04216.pdf
Size:
4.27 MB
Format:
Adobe Portable Document Format

Collections