Topology and combinatorics of real line arrangements.
dc.contributor.author | Artal Bartolo, Enrique | |
dc.contributor.author | Carmona Ruber, Jorge | |
dc.contributor.author | Cogolludo Agustín, José Ignacio | |
dc.contributor.author | Marcos Buzunáriz, Miguel Ángel | |
dc.date.accessioned | 2023-06-20T10:36:13Z | |
dc.date.available | 2023-06-20T10:36:13Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We prove the existence of complexified real arrangements with the same combinatorics but different embeddings in P2. Such a pair of arrangements has an additional property: they admit conjugated equations on the ring of polynomials over Q(√5). | |
dc.description.department | Sección Deptal. de Sistemas Informáticos y Computación | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22049 | |
dc.identifier.doi | 10.1112/S0010437X05001405 | |
dc.identifier.issn | 0010-437X | |
dc.identifier.officialurl | http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=353644 | |
dc.identifier.relatedurl | http://arxiv.org/pdf/math/0307296v2.pdf | |
dc.identifier.relatedurl | http://www.journals.cambridge.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50733 | |
dc.issue.number | 6 | |
dc.journal.title | Compositio Mathematica | |
dc.language.iso | eng | |
dc.page.final | 1588 | |
dc.page.initial | 1578 | |
dc.publisher | Cambridge University Press | |
dc.relation.projectID | BFM2001-1488-C02-02 | |
dc.relation.projectID | BFM2001-1488-C02-01. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Line arrangements | |
dc.subject.keyword | Braid monodromy. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Topology and combinatorics of real line arrangements. | |
dc.type | journal article | |
dc.volume.number | 141 | |
dcterms.references | E. Artal, J. Carmona, and J. I. Cogolludo, Braid monodromy and topology of plane curves, Duke Math. J. 118 (2003), 261–278. Artal, J. Carmona, J. I. Cogolludo, and M. Marco,Invariants of combinatorial line arrangements and Rybnikov’s example, Proc. 12th MSJ-IRI symposium, Adv. Stud. Pure Math. (Math.Soc. Japan, Tokyo), to appear, arXiv:math.AG/0403543. D. C. Cohen and A. I. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment.Math.Helv. 72 (1997), 285–315. The GAP Group, Aachen, St. Andrews, GAP – Groups,Algorithms, and Programming, version 4.2 (2000),available at http://www.gap-system.org. G. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement,Preprint (1998),arXiv:math.AG/9805056. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | faea3c31-07a3-433c-96f8-f1bfae9110a1 | |
relation.isAuthorOfPublication.latestForDiscovery | faea3c31-07a3-433c-96f8-f1bfae9110a1 |
Download
Original bundle
1 - 1 of 1