Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Topology and combinatorics of real line arrangements.

dc.contributor.authorArtal Bartolo, Enrique
dc.contributor.authorCarmona Ruber, Jorge
dc.contributor.authorCogolludo Agustín, José Ignacio
dc.contributor.authorMarcos Buzunáriz, Miguel Ángel
dc.date.accessioned2023-06-20T10:36:13Z
dc.date.available2023-06-20T10:36:13Z
dc.date.issued2005
dc.description.abstractWe prove the existence of complexified real arrangements with the same combinatorics but different embeddings in P2. Such a pair of arrangements has an additional property: they admit conjugated equations on the ring of polynomials over Q(√5).
dc.description.departmentSección Deptal. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22049
dc.identifier.doi10.1112/S0010437X05001405
dc.identifier.issn0010-437X
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=353644
dc.identifier.relatedurlhttp://arxiv.org/pdf/math/0307296v2.pdf
dc.identifier.relatedurlhttp://www.journals.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50733
dc.issue.number6
dc.journal.titleCompositio Mathematica
dc.language.isoeng
dc.page.final1588
dc.page.initial1578
dc.publisherCambridge University Press
dc.relation.projectIDBFM2001-1488-C02-02
dc.relation.projectIDBFM2001-1488-C02-01.
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordLine arrangements
dc.subject.keywordBraid monodromy.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleTopology and combinatorics of real line arrangements.
dc.typejournal article
dc.volume.number141
dcterms.referencesE. Artal, J. Carmona, and J. I. Cogolludo, Braid monodromy and topology of plane curves, Duke Math. J. 118 (2003), 261–278. Artal, J. Carmona, J. I. Cogolludo, and M. Marco,Invariants of combinatorial line arrangements and Rybnikov’s example, Proc. 12th MSJ-IRI symposium, Adv. Stud. Pure Math. (Math.Soc. Japan, Tokyo), to appear, arXiv:math.AG/0403543. D. C. Cohen and A. I. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment.Math.Helv. 72 (1997), 285–315. The GAP Group, Aachen, St. Andrews, GAP – Groups,Algorithms, and Programming, version 4.2 (2000),available at http://www.gap-system.org. G. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement,Preprint (1998),arXiv:math.AG/9805056.
dspace.entity.typePublication
relation.isAuthorOfPublicationfaea3c31-07a3-433c-96f8-f1bfae9110a1
relation.isAuthorOfPublication.latestForDiscoveryfaea3c31-07a3-433c-96f8-f1bfae9110a1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carmona03libre.pdf
Size:
206.92 KB
Format:
Adobe Portable Document Format

Collections