Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy-problem when 1 < p < 2

dc.contributor.authorDi Benedetto, E.
dc.contributor.authorHerrero, Miguel A.
dc.date.accessioned2023-06-20T17:05:52Z
dc.date.available2023-06-20T17:05:52Z
dc.date.issued1990-09-27
dc.description.abstractFrom the introduction: "We continue here the investigation initiated earlier by us [Trans. Amer. Math. Soc. 314 (1989), no. 1, 187–224] concerning the solvability of the Cauchy problem and the existence of initial traces for nonnegative weak solutions of the nonlinear evolution equation (1) ut − div(|Du| p−2 Du)=0 in ST ≡ RN ×(0,T), 0<T<∞, N≥1. We study the case 1<p<2, consider only nonnegative solutions and investigate the solvability of the Cauchy problem when (1) is associated with an initial datum (2) u0 ∈ L1 loc (RN), u0≥0. It turns out that the Cauchy problem is solvable whenever (2) holds, regardless of the growth of x→u0(x) as |x|→∞. The weak solutions are shown to be unique whenever the initial datum is taken in the sense of L1 loc(RN). We also prove that every nonnegative weak solution of (1) possesses, as initial trace, a σ-finite Borel measure μ≥0. The case 1<p<2 is noticeably different from the case p>2, both in terms of results and techniques. The main difference stems from the fact that, unlike solutions in the case p>2, solutions of (1) are not, in general, locally bounded.''
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17456
dc.identifier.doi10.1007/BF00400111
dc.identifier.issn0003-9527
dc.identifier.officialurlhttp://www.springerlink.com/content/vm7wm327205477x7/
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57764
dc.issue.number3
dc.journal.titleArchive for Rational Mechanics and Analysis
dc.language.isoeng
dc.page.final290
dc.page.initial225
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu517.955
dc.subject.keywordNon-negative solutions
dc.subject.keywordparabolic p-Laplacian
dc.subject.keywordCauchy problem
dc.subject.keywordHarnack inequality
dc.subject.keywordexistence
dc.subject.keyworduniqueness
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleNon-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy-problem when 1 < p < 2
dc.typejournal article
dc.volume.number111
dcterms.referencesS. N. ANTONSEV, Axially symmetric problems of gas dynamics with flee boundaries, Doklady Akad. Nauk SSSR 216 (1974), pp. 473-476. D. G. ARONSON, L. A. CAFFARELLI, The initial trace of a solution of the porous medium equation, Trans. AMS 280 (1983), pp. 351-366. P. BARAS, M. PIERRE, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), pp. 185-206. P. BARAS, M. PIERRE, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), pp. 111-149. P. BENILAN, M. G. CRANDALL, Regularizing effects of homogeneous evolution equations, MRC Tech. Rep. # 2076, Madison Wi. (1980). P. BENILAN, M.G. CRANDALL, M. PIERRE, Solutions of the porous medium medium equation in RN under optimal conditions on initial values, Indiana Univ. Math. Jour. 33 (1984), pp. 51-87. L. BOCCARDO, T. GALLOUËT, Non linear elliptic and parabolic equations involving measure data, J. Funct. Anal. (to appear). H. BREZIS, A. FRIEDMAN, Non linear parabolic equations involving measures as initial conditions, J. Math. Pures et Appl. 62 (1983), pp. 73-97. B. E. J. DAHLBERG, C. E. KENIG, Non negative solutions of generalized porous medium equations, Revista Matematica Iberoamericana 2 (1986), pp. 267-305. E. DI BENEDETTO, C(1,α) local regularity of weak solutions of degenerate elliptic equations, Non Linear Anal. TMA 7 (1983), pp. 827-850. E. DI BENEDETTO, M. A. HERRERO, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc. 314 (1989), pp. 187-224. E. DI BENEDETTO, A. FRIEDMAN, Hölder estimates for non linear degenerate parabolic systems, Jour. für die Reine und Angewandte Math. 357 (1985), pp. 1-22. E. DI BENEDETTO, CHEN YA-ZHE, On the local behavior of solutions of singular parabolic equations, Archive for Rational Mech. Anal. 103 (1988), pp. 319-346. E. DI BENEDETTO, CHEN YA-ZHE, Boundary estimates for solutions of non linear degenerate parabolic systems, Jour. für die Reine und Angewandte Math. 395 (1989), pp. 102-131. L. C. EVANS, Application of non linear semigroup theory to certain partial differential equations, in Non Linear evolution Equations, M. G. CRANDALL Editor (1979). M. A. HERRERO, J. L. VÁZQUEZ, Asymptotic behaviour of the solutions of a strongly non linear parabolic problem, Ann. Faculté des Sciences Toulouse 3 (1981), pp. 113-127. M. A. HERRERO, M. PIERRE, The Cauchy problem for ut = Δ(um) when 0 < m < 1, Trans. AMS 291 (1985), pp. 145-158. L. I. KAMYNIN, The existence of solutions of Cauchy problems and boundary-value problems for a second order parabolic equation in unbounded domains: I, Differential Equations 23 (1987), pp. 1315-1323. O. A. LADYZHENSKAYA, N.A. SOLONNIKOV, N.N. URAL'TZEVA, Linear and quasi linear equations of parabolic type, Trans. Math. Mono. # 23 AMS Providence R.I. (1968). O. A. LADYZENSKAJIA, New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them, Proc. Steklov Inst. Math. # 102 (1967), pp. 95-118 (transl. Trud. Trudy Math. Inst. Steklov # 102 (1967), pp. 85-104). J. L. LiONS, Quelques méthodes de resolution des problèmes aux limites non linéaires, Dunod, Paris (1969). L. K. MARTINSON, K. B. PAPLOV, Unsteady shear flows of a conducting fluid with a rheological power law, Magnit. Gidrodinamika 2 (1970), pp. 50-58. L. K. MARTINSON, K. B. PAPLOV, The effect of magnetic plasticity in non-Newtonian fluids, Magnit. Gidrodinamika 3 (1969), pp. 69-75. G. MINTY, Monotone (non linear) operators in Hilbert spaces, Duke Math. J. 29 (1967), pp. 341-346. L. E. PAYNE, G. A. PHILIPPIN, Some applications of the maximum principle in the problem of torsional creep, SIAM Jour. Math. Anal. 33 (1977), pp. 446-455. M. PIERRE, Non linear fast diffusion with measures as data, Proceedings of Non linear parabolic equations: Qualitative properties of solutions, TESEI & BOCCARDO Eds. Pitman # 149 (1985). M. PIERRE, Uniqueness of the solutions of ut - Δ(u)m = 0 with initial datum a measure, Non Lin. Anat. TMA, 6 (1982), pp. 175-187. E. S. SABININA, A class of nonlinear degenerate parabolic equations, Sov. Math. Doklady # 143 (1962), pp. 495-498. S. TACKLIND, Sur les classes quasianalitiques des solutions des équations aux derives partielles du type parabolique, Acta Reg. Soc. Sc. Uppsaliensis (Ser. 4) 10 (1936), pp. 3-55. A. N. TYCHONOV, Théorèmes d'unicité pour l'équation de la chaleur, Math. Sbornik 42 (1935), pp. 199-216. D. V. WINDER, Positive temperatures in an infinite rod, Trans. AMS 55 (1944), pp. 85-95.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero49.pdf
Size:
2.28 MB
Format:
Adobe Portable Document Format

Collections