Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Grammatical Evolutionary Techniques for Prompt Migraine Prediction

dc.conference.date20-25 Jul 2016
dc.conference.placeDenver, Estados Unidos
dc.conference.titleGenetic and Evolutionary Computation Conference 2016
dc.contributor.authorPagán Ortiz, Josué
dc.contributor.authorRisco Martín, José Luis
dc.contributor.authorMoya, José M.
dc.contributor.authorAyala Rodrigo, José Luis
dc.date.accessioned2024-01-23T16:25:24Z
dc.date.available2024-01-23T16:25:24Z
dc.date.issued2016
dc.description.abstractThe migraine disease is a chronic headache presenting symptomatic crisis that causes high economic costs to the national health services, and impacts negatively on the quality of life of the patients. Even if some patients can feel unspecific symptoms before the onset of the migraine, these only happen randomly and cannot predict the crisis precisely. In our work, we have proved how migraine crisis can be predicted with high accuracy from the physiological variables of the patients, acquired by a non-intrusive Wireless Body Sensor Network. In this paper, we derive alternative models for migraine prediction using Grammatical Evolution techniques. We obtain prediction horizons around 20 minutes, which are sufficient to advance the drug intake and avoid the symptomatic crisis. The robustness of the models with respect to sensor failures has also been tackled to allow the practical implementation in the ambulatory monitoring platform. The achieved models are non linear mathematical expressions with low computing overhead during the run-time execution in the wearable devices.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.identifier.citationJosué Pagán, José L. Risco-Martín, José M. Moya, and José L. Ayala. 2016. Grammatical Evolutionary Techniques for Prompt Migraine Prediction. In Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO '16). Association for Computing Machinery, New York, NY, USA, 973–980. https://doi.org/10.1145/2908812.2908897
dc.identifier.doi10.1145/2908812.2908897
dc.identifier.isbn978-1-4503-4206-3
dc.identifier.officialurlhttps://doi.org/10.1145/2908812.2908897
dc.identifier.relatedurlhttp://gecco-2016.sigevo.org/index.html/HomePage.html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94869
dc.language.isoeng
dc.page.final980
dc.page.initial973
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2012-33892/ES/TECNOLOGIAS HW%2FSW PARA LA EFICIENCIA ENERGETICA EN SISTEMAS DE COMPUTACION DISTRIBUIDOS/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordGrammatical Evolution
dc.subject.keywordPrediction
dc.subject.keywordMigraine
dc.subject.keywordBiosignal
dc.subject.ucmOptimización matemática
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1299 Otras Especialidades Matemáticas
dc.titleGrammatical Evolutionary Techniques for Prompt Migraine Prediction
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication2e4c4d42-c8d8-450e-bf6b-28f327b89a44
relation.isAuthorOfPublicationb18c2bd8-52be-4d79-bd8b-dbd8e970d703
relation.isAuthorOfPublicationd73a810d-34c3-440e-8b5f-e2a7b0eb538f
relation.isAuthorOfPublication.latestForDiscovery2e4c4d42-c8d8-450e-bf6b-28f327b89a44

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Grammatical_Evolutionary_Techniques.pdf
Size:
2.73 MB
Format:
Adobe Portable Document Format