Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Axiomatic structure of k-additive capacities

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Miranda Menéndez, P., Grabisch, M. & Gil Álvarez, P. et al. «Axiomatic Structure of K-Additive Capacities». Mathematical Social Sciences, vol. 49, n.o 2, marzo de 2005, pp. 153-78. DOI.org (Crossref), https://doi.org/10.1016/j.mathsocsci.2004.06.001.

Abstract

In this paper we deal with the problem of axiomatizing the preference relations modeled through Choquet integral with respect to a k-additive capacity, i.e. whose Mobius transform vanishes for subsets of more than k elements. Thus, k-additive capacities range from probability measures (k=1) to general capacities (k=n). The axiomatization is done in several steps, starting from symmetric 2-additive capacities, a case related to the Gini index, and finishing with general k-additive capacities. We put an emphasis on 2-additive capacities. Our axiomatization is done in the framework of social welfare, and complete previous results of Weymark, Gilboa and Ben Porath, and Gajdos.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections