Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Power-spectrum characterization of the continuous Gaussian ensemble

dc.contributor.authorRelaño Pérez, Armando
dc.contributor.authorMuñoz Muñoz, Laura
dc.contributor.authorRetamosa Granado, Joaquín
dc.contributor.authorFaleiro, E.
dc.contributor.authorMolina, R. A.
dc.date.accessioned2023-06-20T10:48:49Z
dc.date.available2023-06-20T10:48:49Z
dc.date.issued2008-03
dc.description© 2008 The American Physical Society. This work was supported in part by Spanish Government Grants Nos. FIS2006-12783-C03-01 and FIS2006-12783-C03-02 and by Comunidad de Madrid–CSIC Grant No. 200650M012. A.R. was supported by the Spanish program “Juan de la Cierva”.
dc.description.abstractThe continuous Gaussian ensemble, also known as the nu-Gaussian or nu-Hermite ensemble, is a natural extension of the classical Gaussian ensembles of real (nu= 1), complex (nu= 2), or quaternion (nu=4) matrices, where nu is allowed to take any positive value. From a physical point of view, this ensemble may be useful to describe transitions between different symmetries or to describe the terrace-width distributions of vicinal surfaces. Moreover, its simple form allows one to speed up and increase the efficiency of numerical simulations dealing with large matrix dimensions. We analyze the long-range spectral correlations of this ensemble by means of the delta(n) statistic. We derive an analytical expression for the average power spectrum of this statistic, <(P(k)(delta))over bar>, based on approximated forms for the two-point cluster function and the spectral form factor. We find that the power spectrum of delta(n) evolves from <(P(k)(delta))over bar> proportional to 1/ k at nu= 1 to <(P(k)(delta))over bar> proportional to 1/ k(2) at nu= 0. Relevantly, the transition is not homogeneous with a 1/ f alpha noise at all scales, but heterogeneous with coexisting 1/ f and 1/ f(2) noises. There exists a critical frequency k(c)proportional to nu that separates both behaviors: below k(c), <(P(k)(delta))over bar> follows a 1/f power law, while beyond kc, it transits abruptly to a 1/ f(2) power law. For nu>1 the 1/ f noise dominates through the whole frequency range, unveiling that the 1/ f correlation structure remains constant as we increase the level repulsion and reduce to zero the amplitude of the spectral fluctuations. All these results are confirmed by stringent numerical calculations involving matrices with dimensions up to 10(5).eng
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipConsejo Superior de Investigaciones Científicas (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27625
dc.identifier.citationRelaño A, Muñoz L, Retamosa J, Faleiro E and Molina R A 2008 Power-spectrum characterization of the continuous Gaussian ensemble Phys. Rev. E 77 031103
dc.identifier.doi10.1103/PhysRevE.77.031103
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.77.031103
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51270
dc.issue.number3
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordMany-Particle Spectra
dc.subject.keywordOne Dimension
dc.subject.keywordStatistical Properties
dc.subject.keywordRandom-Matrix
dc.subject.keywordGround State
dc.subject.keywordBody Problem
dc.subject.keywordEigenvalues
dc.subject.keywordHermite
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titlePower-spectrum characterization of the continuous Gaussian ensemble
dc.typejournal article
dc.volume.number77
dcterms.references[1] J. Wishart, Biometrika 10, 32 (1928). [2] I. Dumitriu, Ph.D. thesis, Massachussets Institute of Technology, 2003. [3] E. P. Wigner (unpublished). [4] C. E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965). [5] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998). [6] F. J. Dyson, J. Math. Phys. 3, 1191 (1962). [7] I. Dumitriu and A. Edelman, J. Math. Phys. 43, 5830 (2002); I. Dumitriu and A. Edelman, Ann. Inst. Henri Poincare, Sect. A 41, 1083 (2005). [8] G. Le Caër, C. Male, and R. Delannay, Physica A 383, 190 (2007). [9] R. Scharf and F. M. Izrailev, J. Phys. A 23, 963 (1990). [10] F. Calogero, J. Math. Phys. 10, 2191 (1969); 10, 2197 (1969). [11] B. Sutherland, Phys. Rev. A 4, 2019 (1971); J. Math. Phys. 12, 246 (1971). [12] H. Gebremariam, S. D. Cohen, H. L. Richards, and T. L. Einstein, Phys. Rev. B 69, 125404 (2004); H. L. Richards and T. L. Einstein, Phys. Rev. E 72, 016124 (2005); A. Pimpinelli, H. Gebremariam, and T. L. Einstein, Phys. Rev. Lett. 95, 246101 (2005); A. N. Benson, H. L. Richards, and T. L. Einstein, Phys. Rev. B 73, 115429 (2006). [14] A. Pandey, Ann. Phys. (N.Y.) 119, 170 (1979). [15] A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, Phys. Rev. Lett. 89, 244102 (2002). [16] E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, Phys. Rev. Lett. 93, 244101 (2004). [17] J. B. French, V. K. B. Kota, A. Pandey, and B. Tomsovic, Ann. Phys. (N.Y.) 181, 198 (1988). [18] Handbook of Mathematical Formulas, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1972). [19] M. L. Mehta, Random Matrices (Academic, New York, 1991). [20] J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, L. Salasnich, M. Vranicar, and M. Robnik, Phys. Rev. Lett. 94, 084101 (2005); M. S. Santhanam and J. N. Bandyopadhyay, ibid. 95, 114101 (2005). [21] A. Relaño, J. Retamosa, E. Faleiro, R. A. Molina, and A. P. Zuker, Phys. Rev. E 73, 026204 (2006). [22] C. Male, G. Le Caër, and R. Delannay, Phys. Rev. E 76, 042101 (2007).
dspace.entity.typePublication
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication145acd47-d011-4f1d-864c-e9f7aa0751af
relation.isAuthorOfPublication1d1118d9-569f-4139-988b-921ac5a8407c
relation.isAuthorOfPublication.latestForDiscovery53fed635-944b-485a-b13a-ea8f9355b7aa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relano28libre.pdf
Size:
336.07 KB
Format:
Adobe Portable Document Format

Collections