Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Normal Tropical (0,−1)-Matrices and Their Orthogonal Sets

dc.contributor.authorBakhadly, B.
dc.contributor.authorGuterman, A.
dc.contributor.authorPuente Muñoz, María Jesús De La
dc.date.accessioned2023-06-22T12:42:16Z
dc.date.available2023-06-22T12:42:16Z
dc.date.issued2023-02
dc.descriptionTranslated from Fundamentalnaya i Prikladnaya Matematika, Vol. 24, No. 1, pp. 5–30, 2022.
dc.description.abstractSquare matrices A and B are orthogonal if AʘB = Z = BʘA, where Z is the matrix entries equal to 0, and ʘ is the tropical matrix multiplication. We study orthogonality for normal matrices over the set {0, −1}, endowed with tropical addition and multiplication. To do this, we investigate the orthogonal set of a matrix A, i.e., the set of all matrices orthogonal to A. In particular, we study the family of minimal elements inside the orthogonal set, called a basis. Orthogonal sets and bases are computed for various matrices and matrix sets. Matrices whose bases are singletons are characterized. Orthogonality and minimal orthogonality are described in the language of graphs. The geometric interpretation of the results obtained is discussed.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76951
dc.identifier.doi10.1007/s10958-023-06305-4
dc.identifier.issn1072-3374
dc.identifier.officialurlhttps://doi.org/10.1007/s10958-023-06305-4
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s10958-023-06305-4
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73071
dc.issue.number5
dc.journal.titleJournal of Mathematical Sciences
dc.language.isoeng
dc.page.final631
dc.page.initial614
dc.publisherSpringer
dc.relation.projectIDMTM2016-76808-P
dc.relation.projectIDPID-2019-10770 GB-I00
dc.rights.accessRightsopen access
dc.subject.cdu512.643
dc.subject.keywordOrthogonal
dc.subject.keywordOrthogonality
dc.subject.keywordTropical semiring
dc.subject.keywordTropical normal matrix
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleNormal Tropical (0,−1)-Matrices and Their Orthogonal Sets
dc.typejournal article
dc.volume.number269
dcterms.references1. B. Bakhadly, A. Guterman, and M. J. de la Puente, “Orthogonality for (0, −1) tropical normal matrices,” Special Matrices, 8, 40–60 (2020). 2. G. Birkhoff, Lattice Theory, Providence: Rhode Island (1967). 3. P. Butkovic, “Simple image set of (max, +) linear mappings,” Discrete Appl. Math., 105, 73–86 (2000). 4. P. Butkovic, Max-plus Linear Systems: Theory and Algorithms, Springer (2010). 5. P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice Hall (1973). 6. M. Develin and B. Sturmfels, “Tropical convexity,” Doc. Math. 9, 1–27 (2004), Erratum in Doc. Math., 9, 205–206 (2004). 7. I. B. Kozhukhov and A. V. Mikhalev, “Polygons over semigroups: selected questions of structure theory,” Fundam. Prikl. Mat., textbf23, No. 3, 141–199 (2020). 8. G. L. Litvinov and S. N. Sergeev, eds., Tropical and Idempotent Mathematics, Contemp. Math., Vol. 495, Amer. Math. Soc. (2009). 9. M. J. de la Puente, “Tropical linear maps on the plane,” Linear Algebra Appl., 435, No. 7, 1681–1710 (2011). 10. M. J. de la Puente, “On tropical Kleene star matrices and alcoved polytopes,” Kybernetika, 49, No. 6, 897–910 (2013). 11. M. J. de la Puente, “Quasi-Euclidean classification of alcoved convex polyhedra,” Linear Multilinear Algebra, 67 (2019). 12. S. Sergeev, “Multiorder, Kleene stars and cyclic projectors in the geometry of max cones,” in: G. L. Litvinov and S. N. Sergeev, eds., Tropical and Idempotent Mathematics, Contemp. Math., Vol. 495, Amer. Math. Soc (2009), pp. 317–342. 13. S. Sergeev, H. Scheneider, and P. Butkovic, “On visualization, subeigenvectors and Kleene stars in max algebra,” Linear Algebra Appl., 431, 2395–2406 (2009). 14. N. M. Tran, “Enumerating polytropes,” J. Combin. Theory Ser. A, 151, 1–22 (2017). 15. M. Yoeli, “A note on a generalization of Boolean matrix theory,” Am. Math. Mon., 68, No. 6, 552–557 (1961).
dspace.entity.typePublication
relation.isAuthorOfPublication630e203d-3f7d-46d6-a43c-cb07da8c4b71
relation.isAuthorOfPublication.latestForDiscovery630e203d-3f7d-46d6-a43c-cb07da8c4b71

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BakhadlyGutPuenteEngl.pdf
Size:
4.77 MB
Format:
Adobe Portable Document Format

Collections