Analysis of residuals in contingency tables: another nail in the coffin of conditional approaches to significance testing.
dc.contributor.author | García Pérez, Miguel Ángel | |
dc.contributor.author | Núñez Antón, Vicente | |
dc.contributor.author | Alcalá Quintana, Rocío | |
dc.date.accessioned | 2023-06-18T06:49:59Z | |
dc.date.available | 2023-06-18T06:49:59Z | |
dc.date.issued | 2015-03 | |
dc.description.abstract | Omnibus tests of significance in contingency tables use statistics of the chi-square type. When the null is rejected, residual analyses are conducted to identify cells in which observed frequencies differ significantly from expected frequencies. Residual analyses are thus conditioned on a significant omnibus test. Conditional approaches have been shown to substantially alter type I error rates in cases involving t tests conditional on the results of a test of equality of variances, or tests of regression coefficients conditional on the results of tests of heteroscedasticity. We show that residual analyses conditional on a significant omnibus test are also affected by this problem, yielding type I error rates that can be up to 6 times larger than nominal rates, depending on the size of the table and the form of the marginal distributions. We explored several unconditional approaches in search for a method that maintains the nominal type I error rate and found out that a bootstrap correction for multiple testing achieved this goal. The validity of this approach is documented for two-way contingency tables in the contexts of tests of independence, tests of homogeneity, and fitting psychometric functions. Computer code in MATLAB and R to conduct these analyses is provided as Supplementary Material. | |
dc.description.department | Depto. de Psicobiología y Metodología en Ciencias del Comportamiento | |
dc.description.faculty | Fac. de Psicología | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación and FEDER | |
dc.description.sponsorship | Universidad del PaísVasco UPV/EHU | |
dc.description.sponsorship | Departamento de Educación del Gobierno Vasco | |
dc.description.sponsorship | UPV/EHU Econometrics Research Group | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/35687 | |
dc.identifier.doi | doi.org/10.3758/s13428-014-0472-0 | |
dc.identifier.issn | 1554-3528 | |
dc.identifier.officialurl | http://dx.doi.org/10.3758/s13428-014-0472-0 | |
dc.identifier.relatedurl | http://link.springer.com/article/10.3758/s13428-014-0472-0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24344 | |
dc.issue.number | 1 | |
dc.journal.title | Behavior research methods | |
dc.language.iso | eng | |
dc.page.final | 161 | |
dc.page.initial | 147 | |
dc.publisher | Psychonomic Society | |
dc.relation.projectID | PSI2009-08800 | |
dc.relation.projectID | PSI2012-32903 | |
dc.relation.projectID | MTM2010-14913 | |
dc.relation.projectID | US12/09 | |
dc.relation.projectID | IT-642-13 | |
dc.relation.projectID | UFI11/03 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.22-7 | |
dc.subject.keyword | Contingency tables | |
dc.subject.keyword | Residual analysis | |
dc.subject.keyword | Chi-square tests | |
dc.subject.keyword | Multiple testing | |
dc.subject.keyword | Bootstrap | |
dc.subject.ucm | Estadística aplicada | |
dc.title | Analysis of residuals in contingency tables: another nail in the coffin of conditional approaches to significance testing. | |
dc.type | journal article | |
dc.volume.number | 47 | |
dcterms.references | Abdi, H. (2007). Bonferroni test. In N. J. Salkind (Ed.), Encyclopedia of measurement and statistics (pp. 104–108). Thousand Oaks: Sage. doi:10.4135/9781412952644.n60 Aggarwal, C. C. (2013). Outlier analysis. New York: Springer. Agresti, A. (1984). Analysis of ordinal categorical data. New York: Wiley. Agresti, A. (1990). Categorical data analysis. New York: Wiley. Albers, W., Boon, P. C., & Kallenberg, C. M. (2000). The asymptotic behavior of tests of normal means based on a variance pre-test. Journal of Statistical Planning and Inference, 88, 47–57. doi:10.1016/S0378-3758(99)00211-6 Albertazzi, L., Da Pos, O., Canal, L., Micciolo, R., Malfatti, M., & Vescovi, M. (2013). The hue of shapes. Journal of Experimental Psychology: Human Perception and Performance, 39, 37–47. doi:10.1037/a0028816 Alcalá-Quintana, R., & García-Pérez, M. A. (2013). Fitting model-based psychometric functions to simultaneity and temporal-order judgment data: matlab and R routines. Behavior Research Methods, 45, 972–998. doi:10.3758/s13428-013-0325-2 Berry, K. J., & Mielke, P. W., Jr. (1986). R by C chi-square analyses with small expected cell frequencies. Educational and Psychological Measurement, 46, 169–173. doi:10.1177/0013164486461018 Berry, K. J., & Mielke, P. W., Jr. (1988). Monte Carlo comparisons of the asymptotic chi-square and likelihood-ratio tests with the nonasymptotic chi-square test for sparse r × c tables. Psychological Bulletin, 103, 256–264. doi:10.1037/0033-2909.103.2.256 Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge: MIT Press. Brown, M. B., & Fuchs, C. (1983). On maximum likelihood estimation in sparse contingency tables. Computational Statistics and Data Analysis, 1, 3–15. doi:10.1016/0167-9473(83)90059-2 Caudill, S. B. (1988). Type I errors after preliminary tests for heteroscedasticity. The Statistician, 37, 65–68. doi:10.2307/2348380 Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society Series B, 46, 440–464. Everitt, B. S. (1992). The analysis of contingency tables (2nd ed.). London: Chapman & Hall. Fienberg, S. E. (2005). Contingency tables and log-linear models. In K. Kempf-Leonard (Ed.), Encyclopedia of social measurement (Vol. 1, pp. 499–506). New York: Elsevier. doi:10.1016/B0-12-369398-5/00148-1 Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions (4th ed.). New York: Wiley. Forsberg, L., Jonsson, B., & Kristiansson, U. (1999). On Type I errors after a preliminary test for heteroscedasticity. The Statistician, 48, 63–72. doi:10.1111/1467-9884.00171 García-Pérez, M. A. (1994). Parameter estimation and goodness-of-fit testing in multinomial models. British Journal of Mathematical and Statistical Psychology, 47, 247–282. doi:10.1111/j.2044-8317.1994.tb01037.x García-Pérez, M. A. (2012). Statistical conclusion validity: Some common threats and simple remedies. Frontiers in Psychology, 3, 325. doi:10.3389/fpsyg.2012.00325 García-Pérez, M. A., & Alcalá-Quintana, R. (2012). Response errors explain the failure of independent-channels models of perception of temporal order. Frontiers in Psychology, 3, 94. doi:10.3389/fpsyg.2012.00094 García-Pérez, M. A., & Núñez-Antón, V. (2003). Cellwise residual analysis in two-way contingency tables. Educational and Psychological Measurement, 63, 825–839. doi:10.1177/0013164403251280 García-Pérez, M. A., & Núñez-Antón, V. (2009). Accuracy of power-divergence statistics for testing independence and homogeneity in two-way contingency tables. Communications in Statistics – Simulation and Computation, 38, 503–512. doi:10.1080/03610910802538351 Haberman, S. J. (1973). The analysis of residuals in cross-classified tables. Biometrics, 29, 205–220. Hayes, A. F., & Cai, L. (2007). Further evaluating the conditional decision rule for comparing two independent means. British Journal of Mathematical and Statistical Psychology, 60, 217–244. doi:10.1348/000711005X62576 Justice, L. M., McGinty, A. S., Zucker, T., Cabell, S. Q., & Piasta, S. B. (2013). Bi-directional dynamics underlie the complexity of talk in teacher–child play-based conversations in classrooms serving at-risk pupils. Early Childhood Research Quarterly, 28, 496–508. doi:10.1016/j.ecresq.2013.02.005 Kuhnt, S. (2004). Outlier identification procedures for contingency tables using maximum likelihood and L 1 estimates. Scandinavian Journal of Statistics, 31, 431–442. doi:10.1111/j.1467-9469.2004.02_057.x Kuhnt, S. (2010). Breakdown concepts for contingency tables. Metrika, 71, 281–294. doi:10.1007/s00184-008-0230-3 Kuhnt, S., Rapallo, F., & Rehage, A. (2014). Outlier detection in contingency tables based on minimal patterns. Statistics and Computing. doi:10.1007/s11222-013-9382-8 Lantz, B. (2013). The impact of sample non-normality on ANOVA and alternative methods. British Journal of Mathematical and Statistical Psychology, 66, 224–244. doi:10.1111/j.2044-8317.2012.02047.x Moser, B. K., & Stevens, G. R. (1992). Homogeneity of variance in the two-sample means test. The American Statistician, 46, 19–21. doi:10.1080/00031305.1992.10475839 Nandram, B., Bhatta, D., & Bhadra, D. (2014). A likelihood ratio test of quasi-independence for sparse two-way contingency tables. Journal of Statistical Computation and Simulation. doi:10.1080/00949655.2013.815190 Ng, M., & Wilcox, R. R. (2011). A comparison of two-stage procedures for testing least-squares coefficients under heteroscedasticity. British Numerical Algorithms Group (1999). NAG fortran library manual, Mark 19. Oxford: Author. Rapallo, F. (2012). Outliers and patterns of outliers in contingency tables with algebraic statistics. Scandinavian Journal of Statistics, 39, 784–797. doi:10.1111/j.1467-9469.2012.00790.x Rasch, D., Kubinger, K. D., & Moder, K. (2011). The two-sample t test: Pre-testing its assumptions does not pay off. Statistical Papers, 52, 219–231. doi:10.1007/s00362-009-0224-x Read, T. R. C., & Cressie, N. A. C. (1988). Goodness-of-fit statistics for discrete multivariate data. New York: Springer. Rochon, J., & Kieser, M. (2011). A closer look at the effect of preliminary goodness-of-fit testing for normality for the one-sample t-test. British Journal of Mathematical and Statistical Psychology, 64, 410–426. doi:10.1348/0007-1102.002003 Rom, D. M. (2013). An improved Hochberg procedure for multiple tests of significance. British Journal of Mathematical and Statistical Psychology, 66, 189–196. doi:10.1111/j.2044-8317.2012.02042.x Savardi, U., Bianchi, I., & Bertamini, M. (2010). Naïve predictions of motion and orientation in mirrors: From what we see to what expect reflections to do. Acta Psychologica, 134, 1–15. doi:10.1016/j.actpsy.2009.11.008 Schucany, W. R., & Ng, H. K. T. (2006). Preliminary goodness-of-fit tests for normality do not validate the one-sample Student t. Communications in Statistics – Theory and Methods, 35, 2275–2286. doi:10.1080/03610920600853308 Simonoff, J. S. (1988). Detecting outlying cells in two-way contingency tables via backwards-stepping. Technometrics, 30, 339–345.doi:10.1080/00401706.1988.10488407 Simonoff, J. S. (2003). Analyzing categorical data. New York: Springer. Stevens, W. L. (1950). Fiducial limits of the parameter of a discontinuous distribution. Biometrika, 37, 117–129. Szczepanowski, R., Traczyk, J., Wierzchoń, M., & Cleeremans, A. (2013). The perception of visual emotion: Comparing different measures of awareness. Consciousness and Cognition, 22, 212–220. doi:10.1016/j.concog.2012.12.003 Thorley, C., & Rushton-Woods, J. (2013). Blame conformity: Leading eyewitness statements can influence attributions of blame for an accident. Applied Cognitive Psychology, 27, 291–296. doi:10.1002/acp.2906 Tompkins, V., Zucker, T. A., Justice, L. M., & Binici, S. (2013). Inferential talk during teacher–child interactions in small-group play. Early Childhood Research Quarterly, 28, 424–436. doi:10.1016/j.ecresq.2012.11.001 van Eijk, R. L. J., Kohlrausch, A., Juola, J. F., & van de Par, S. (2008). Audiovisual synchrony and temporal order judgments: Effects of experimental method and stimulus type. Perception & Psychophysics, 70, 955–968. doi:10.3758/PP.70.6.955 Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63, 1293–1313. doi:10.3758/BF03194544 Wickens, T. D. (1989). Multiway contingency tables analysis for the social sciences. Hillsdale: Erlbaum. Wickens, T. D. (1998). Categorical data analysis. Annual Review of Psychology, 49, 537–558. doi:10.1146/annurev.psych.49.1.537 Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? American Psychologist, 53, 300–314.doi:10.1037/0003-066X.53.3.300 Zimmerman, D. W. (1996). Some properties of preliminary tests of equality of variances in the two-sample location problem. Journal of General Psychology, 123, 217–231. doi:10.1080/00221309.1996.9921274 Zimmerman, D. W. (2004). A note on preliminary tests of equality of variances. British Journal of Mathematical and Statistical Psychology, 57, 173–181. doi:10.1348/000711004849222 Zimmerman, D. W. (2011). A simple and effective decision rule for choosing a significance test to protect against non-normality. British Journal of Mathematical and Statistical Psychology, 64, 388–409. doi:10.1348/000711010X524739 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e5c3695e-f861-4397-94d7-7aa543f0a630 | |
relation.isAuthorOfPublication | 0a7dbcf6-8a0b-4b47-91af-79bb5db7bb52 | |
relation.isAuthorOfPublication.latestForDiscovery | e5c3695e-f861-4397-94d7-7aa543f0a630 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- analysis of residuals García-Pérez y Alcalá-Quintana.pdf
- Size:
- 809.15 KB
- Format:
- Adobe Portable Document Format