Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings

dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorPanetsos Petrova, Fivos
dc.contributor.authorDe Feo, Óscar
dc.date.accessioned2023-06-20T09:40:23Z
dc.date.available2023-06-20T09:40:23Z
dc.date.issued2005-06-15
dc.description.abstractIn the present paper we propose a novel method for the identification and modeling of neural networks using extracellular spike recordings. We create a deterministic model of the effective network, whose dynamic behavior fits experimental data. The network obtained by our method includes explicit mathematical models of each of the spiking neurons and a description of the effective connectivity between them. Such a model allows us to study the properties of the neuron ensemble independently from the original data. It also permits to infer properties of the ensemble that cannot be directly obtained from the observed spike trains. The performance of the method is tested with spike trains artificially generated by a number of different neural networks. (c) 2004 Elsevier B.V. All rights reserved.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16816
dc.identifier.citationMakarov Slizneva, V., Panetsos Petrova, F., De Feo, Ó. «A Method for Determining Neural Connectivity and Inferring the Underlying Network Dynamics Using Extracellular Spike Recordings». Journal of Neuroscience Methods, vol. 144, n.o 2, junio de 2005, pp. 265-79. DOI.org (Crossref), https://doi.org/10.1016/j.jneumeth.2004.11.013.
dc.identifier.doi10.1016/j.jneumeth.2004.11.013
dc.identifier.issn0165-0270
dc.identifier.officialurlhttps//doi.org/10.1016/j.jneumeth.2004.11.013
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0165027004004017
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50156
dc.issue.number2
dc.journal.titleJournal of Neuroscience Methods
dc.language.isoeng
dc.page.final279
dc.page.initial265
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu512.74
dc.subject.keywordNeural circuits
dc.subject.keywordSpike trains
dc.subject.keywordConnectivity identification
dc.subject.keywordNetwork modeling
dc.subject.keywordStochastic point processes
dc.subject.keywordDirected transfer-function
dc.subject.keywordSynaptic connections
dc.subject.keywordModels
dc.subject.keywordIdentification
dc.subject.keywordTrains
dc.subject.keywordSystems
dc.subject.keywordAccuracy
dc.subject.keywordNeurons
dc.subject.ucmGrupos (Matemáticas)
dc.titleA method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordingsen
dc.typejournal article
dc.volume.number144
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication1279018d-18b3-4bb8-b291-d43947d907b2
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makarov22.pdf
Size:
714.03 KB
Format:
Adobe Portable Document Format

Collections