A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings
dc.contributor.author | Makarov Slizneva, Valeriy | |
dc.contributor.author | Panetsos Petrova, Fivos | |
dc.contributor.author | De Feo, Óscar | |
dc.date.accessioned | 2023-06-20T09:40:23Z | |
dc.date.available | 2023-06-20T09:40:23Z | |
dc.date.issued | 2005-06-15 | |
dc.description.abstract | In the present paper we propose a novel method for the identification and modeling of neural networks using extracellular spike recordings. We create a deterministic model of the effective network, whose dynamic behavior fits experimental data. The network obtained by our method includes explicit mathematical models of each of the spiking neurons and a description of the effective connectivity between them. Such a model allows us to study the properties of the neuron ensemble independently from the original data. It also permits to infer properties of the ensemble that cannot be directly obtained from the observed spike trains. The performance of the method is tested with spike trains artificially generated by a number of different neural networks. (c) 2004 Elsevier B.V. All rights reserved. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16816 | |
dc.identifier.citation | Makarov Slizneva, V., Panetsos Petrova, F., De Feo, Ó. «A Method for Determining Neural Connectivity and Inferring the Underlying Network Dynamics Using Extracellular Spike Recordings». Journal of Neuroscience Methods, vol. 144, n.o 2, junio de 2005, pp. 265-79. DOI.org (Crossref), https://doi.org/10.1016/j.jneumeth.2004.11.013. | |
dc.identifier.doi | 10.1016/j.jneumeth.2004.11.013 | |
dc.identifier.issn | 0165-0270 | |
dc.identifier.officialurl | https//doi.org/10.1016/j.jneumeth.2004.11.013 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0165027004004017 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50156 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Neuroscience Methods | |
dc.language.iso | eng | |
dc.page.final | 279 | |
dc.page.initial | 265 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.74 | |
dc.subject.keyword | Neural circuits | |
dc.subject.keyword | Spike trains | |
dc.subject.keyword | Connectivity identification | |
dc.subject.keyword | Network modeling | |
dc.subject.keyword | Stochastic point processes | |
dc.subject.keyword | Directed transfer-function | |
dc.subject.keyword | Synaptic connections | |
dc.subject.keyword | Models | |
dc.subject.keyword | Identification | |
dc.subject.keyword | Trains | |
dc.subject.keyword | Systems | |
dc.subject.keyword | Accuracy | |
dc.subject.keyword | Neurons | |
dc.subject.ucm | Grupos (Matemáticas) | |
dc.title | A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings | en |
dc.type | journal article | |
dc.volume.number | 144 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a5728eb3-1e14-4d59-9d6f-d7aa78f88594 | |
relation.isAuthorOfPublication | 1279018d-18b3-4bb8-b291-d43947d907b2 | |
relation.isAuthorOfPublication.latestForDiscovery | a5728eb3-1e14-4d59-9d6f-d7aa78f88594 |
Download
Original bundle
1 - 1 of 1