Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Parametric generalized offsets to hypersurfaces

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorSendra, Juana
dc.contributor.authorSendra, J. Rafael
dc.date.accessioned2023-06-20T16:50:09Z
dc.date.available2023-06-20T16:50:09Z
dc.date.issued1997-03-02
dc.description.abstractIn this paper we extend the classical notion of offset to the concept of generalized offset to hypersurfaces. In addition, we present a complete theoretical analysis of the rationality and unirationality of generalized offsets. Characterizations for deciding whether the generalized offset to a hypersurface is parametric or it has two parametric components are given. As an application, an algorithm to analyse the rationality of the components of the generalized offset to a plane curve or to a surface, and to compute rational parametrizations of its rational components, is outlined.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.sponsorshipUniversidad de Alcalá
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14853
dc.identifier.doi10.1006/jsco.1996.0088
dc.identifier.issn0747-7171
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/07477171
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57182
dc.journal.titleJournal of symbolic computation
dc.language.isoeng
dc.page.final285
dc.page.initial267
dc.publisherAcademic Press
dc.relation.projectIDPB 93-0440-C03-01
dc.relation.projectIDProj. 030/95
dc.relation.projectIDPB 95/0563-A
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordCurves
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleParametric generalized offsets to hypersurfaces
dc.typejournal article
dc.volume.number23
dcterms.references.|.|Farouki, R.T. (1992). Pythagorean-hodograph curves in practical use, in geometry processing for design and manufacturing. Barnhill, R.E., ed., SIAM, Philadelphia. pp 3{33. .|.|Farouki, R.T., Ne®, C.A. (1990a). Analytic properties of plane o®set curves. Computer Aided Geometric Design 7 83{99. .|.|Farouki, R.T., Ne®, C.A. (1990b). Algebraic properties of plane o®set curves. Computer Aided Geometric Design 7 100{127. .|.|Farouki, R.T., Ne®, C.A. (1997), Hermite interpolation by Pythagorean-hodograph quintics. Math. Comp., to appear. .|.|Farouki, R.T., Sakkalis, T. (1990). Pythagorean hodographs. IBM J. Res. Develop. 34, 736{752. .|.|Harris, J. (1992). Algebraic geometry: a ¯rst course. Springer-Verlag. .|.|Ho®man, C. (1990). Algebraic and numerical techniques for o®sets and blends. Dahmen, W., et al., eds, Computation of Curves and Surfaces. (Kluwer) pp. 499{528. .|.|LÄu, W. (1995a). O®set-rational parametric plane curves, Computer Aided Geometric Design 12, 601{617. .|.|LÄu, W. (1995b). Rational parametrizations of quadrics and their o®sets. Technical Report No. 24, Institut fÄur Geometrie, Technische UniversitÄat Wien. .|.|Pottmann, H., (1995). Rational curves and surfaces with rational o®sets, Computer Aided Geometric Design 12, 175{192. .|.|Pottmann, H., LÄu, W., Ravani, B. (1995). Rational ruled surfaces and their o®sets. Technical Report No. 23, Institut fÄur Geometrie, Technische UniversitÄat Wien. .|.|Salmon, G. (1960). A Treatise on the Higher Plane Curves. New York, Chelsea. .|.|Schicho, J. (1995). Rational Parametrization of Algebraic Surfaces. Symbolic Solution of an equation in three variables. Ph.D. Thesis, University Linz, Austria. .|.|Sendra, J. (1996). M¶etodos Algor¶³tmicos para variedades o®set. Ph.D. Thesis, Universidad de Alcal¶a, Spain. In preparation. .|.|Sendra, J.R., Sendra, J. (1995). On the rationality of o®set curves. Techn. Rep. RISC 95-02 Univ. Linz. .|.|Sendra, J.R., Winkler, F. (1991). Symbolic parametrization of curves. J. Symbolic Computation 12/6, 607{631. .|.|Winkler, F. (1996). Polynomial Algorithms in Computer Algebra. Springer-Verlag, ACM Press.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
23.pdf
Size:
753.84 KB
Format:
Adobe Portable Document Format

Collections