Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Parametric generalized offsets to hypersurfaces

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorSendra, Juana
dc.contributor.authorSendra, J. Rafael
dc.date.accessioned2023-06-20T16:50:09Z
dc.date.available2023-06-20T16:50:09Z
dc.date.issued1997-03-02
dc.description.abstractIn this paper we extend the classical notion of offset to the concept of generalized offset to hypersurfaces. In addition, we present a complete theoretical analysis of the rationality and unirationality of generalized offsets. Characterizations for deciding whether the generalized offset to a hypersurface is parametric or it has two parametric components are given. As an application, an algorithm to analyse the rationality of the components of the generalized offset to a plane curve or to a surface, and to compute rational parametrizations of its rational components, is outlined.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.sponsorshipUniversidad de Alcalá
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14853
dc.identifier.doi10.1006/jsco.1996.0088
dc.identifier.issn0747-7171
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/07477171
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57182
dc.journal.titleJournal of symbolic computation
dc.language.isoeng
dc.page.final285
dc.page.initial267
dc.publisherAcademic Press
dc.relation.projectIDPB 93-0440-C03-01
dc.relation.projectIDProj. 030/95
dc.relation.projectIDPB 95/0563-A
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordCurves
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleParametric generalized offsets to hypersurfaces
dc.typejournal article
dc.volume.number23
dcterms.references.|.|Farouki, R.T. (1992). Pythagorean-hodograph curves in practical use, in geometry processing for design and manufacturing. Barnhill, R.E., ed., SIAM, Philadelphia. pp 3{33. .|.|Farouki, R.T., Ne®, C.A. (1990a). Analytic properties of plane o®set curves. Computer Aided Geometric Design 7 83{99. .|.|Farouki, R.T., Ne®, C.A. (1990b). Algebraic properties of plane o®set curves. Computer Aided Geometric Design 7 100{127. .|.|Farouki, R.T., Ne®, C.A. (1997), Hermite interpolation by Pythagorean-hodograph quintics. Math. Comp., to appear. .|.|Farouki, R.T., Sakkalis, T. (1990). Pythagorean hodographs. IBM J. Res. Develop. 34, 736{752. .|.|Harris, J. (1992). Algebraic geometry: a ¯rst course. Springer-Verlag. .|.|Ho®man, C. (1990). Algebraic and numerical techniques for o®sets and blends. Dahmen, W., et al., eds, Computation of Curves and Surfaces. (Kluwer) pp. 499{528. .|.|LÄu, W. (1995a). O®set-rational parametric plane curves, Computer Aided Geometric Design 12, 601{617. .|.|LÄu, W. (1995b). Rational parametrizations of quadrics and their o®sets. Technical Report No. 24, Institut fÄur Geometrie, Technische UniversitÄat Wien. .|.|Pottmann, H., (1995). Rational curves and surfaces with rational o®sets, Computer Aided Geometric Design 12, 175{192. .|.|Pottmann, H., LÄu, W., Ravani, B. (1995). Rational ruled surfaces and their o®sets. Technical Report No. 23, Institut fÄur Geometrie, Technische UniversitÄat Wien. .|.|Salmon, G. (1960). A Treatise on the Higher Plane Curves. New York, Chelsea. .|.|Schicho, J. (1995). Rational Parametrization of Algebraic Surfaces. Symbolic Solution of an equation in three variables. Ph.D. Thesis, University Linz, Austria. .|.|Sendra, J. (1996). M¶etodos Algor¶³tmicos para variedades o®set. Ph.D. Thesis, Universidad de Alcal¶a, Spain. In preparation. .|.|Sendra, J.R., Sendra, J. (1995). On the rationality of o®set curves. Techn. Rep. RISC 95-02 Univ. Linz. .|.|Sendra, J.R., Winkler, F. (1991). Symbolic parametrization of curves. J. Symbolic Computation 12/6, 607{631. .|.|Winkler, F. (1996). Polynomial Algorithms in Computer Algebra. Springer-Verlag, ACM Press.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
23.pdf
Size:
753.84 KB
Format:
Adobe Portable Document Format

Collections