Parametric generalized offsets to hypersurfaces
dc.contributor.author | Arrondo Esteban, Enrique | |
dc.contributor.author | Sendra, Juana | |
dc.contributor.author | Sendra, J. Rafael | |
dc.date.accessioned | 2023-06-20T16:50:09Z | |
dc.date.available | 2023-06-20T16:50:09Z | |
dc.date.issued | 1997-03-02 | |
dc.description.abstract | In this paper we extend the classical notion of offset to the concept of generalized offset to hypersurfaces. In addition, we present a complete theoretical analysis of the rationality and unirationality of generalized offsets. Characterizations for deciding whether the generalized offset to a hypersurface is parametric or it has two parametric components are given. As an application, an algorithm to analyse the rationality of the components of the generalized offset to a plane curve or to a surface, and to compute rational parametrizations of its rational components, is outlined. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.sponsorship | Universidad de Alcalá | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14853 | |
dc.identifier.doi | 10.1006/jsco.1996.0088 | |
dc.identifier.issn | 0747-7171 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/journal/07477171 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57182 | |
dc.journal.title | Journal of symbolic computation | |
dc.language.iso | eng | |
dc.page.final | 285 | |
dc.page.initial | 267 | |
dc.publisher | Academic Press | |
dc.relation.projectID | PB 93-0440-C03-01 | |
dc.relation.projectID | Proj. 030/95 | |
dc.relation.projectID | PB 95/0563-A | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Curves | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Parametric generalized offsets to hypersurfaces | |
dc.type | journal article | |
dc.volume.number | 23 | |
dcterms.references | .|.|Farouki, R.T. (1992). Pythagorean-hodograph curves in practical use, in geometry processing for design and manufacturing. Barnhill, R.E., ed., SIAM, Philadelphia. pp 3{33. .|.|Farouki, R.T., Ne®, C.A. (1990a). Analytic properties of plane o®set curves. Computer Aided Geometric Design 7 83{99. .|.|Farouki, R.T., Ne®, C.A. (1990b). Algebraic properties of plane o®set curves. Computer Aided Geometric Design 7 100{127. .|.|Farouki, R.T., Ne®, C.A. (1997), Hermite interpolation by Pythagorean-hodograph quintics. Math. Comp., to appear. .|.|Farouki, R.T., Sakkalis, T. (1990). Pythagorean hodographs. IBM J. Res. Develop. 34, 736{752. .|.|Harris, J. (1992). Algebraic geometry: a ¯rst course. Springer-Verlag. .|.|Ho®man, C. (1990). Algebraic and numerical techniques for o®sets and blends. Dahmen, W., et al., eds, Computation of Curves and Surfaces. (Kluwer) pp. 499{528. .|.|LÄu, W. (1995a). O®set-rational parametric plane curves, Computer Aided Geometric Design 12, 601{617. .|.|LÄu, W. (1995b). Rational parametrizations of quadrics and their o®sets. Technical Report No. 24, Institut fÄur Geometrie, Technische UniversitÄat Wien. .|.|Pottmann, H., (1995). Rational curves and surfaces with rational o®sets, Computer Aided Geometric Design 12, 175{192. .|.|Pottmann, H., LÄu, W., Ravani, B. (1995). Rational ruled surfaces and their o®sets. Technical Report No. 23, Institut fÄur Geometrie, Technische UniversitÄat Wien. .|.|Salmon, G. (1960). A Treatise on the Higher Plane Curves. New York, Chelsea. .|.|Schicho, J. (1995). Rational Parametrization of Algebraic Surfaces. Symbolic Solution of an equation in three variables. Ph.D. Thesis, University Linz, Austria. .|.|Sendra, J. (1996). M¶etodos Algor¶³tmicos para variedades o®set. Ph.D. Thesis, Universidad de Alcal¶a, Spain. In preparation. .|.|Sendra, J.R., Sendra, J. (1995). On the rationality of o®set curves. Techn. Rep. RISC 95-02 Univ. Linz. .|.|Sendra, J.R., Winkler, F. (1991). Symbolic parametrization of curves. J. Symbolic Computation 12/6, 607{631. .|.|Winkler, F. (1996). Polynomial Algorithms in Computer Algebra. Springer-Verlag, ACM Press. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |
Download
Original bundle
1 - 1 of 1