Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Renormalized entropy solutions of scalar conservation laws.

dc.contributor.authorBénilan, Philippe
dc.contributor.authorCarrillo Menéndez, José
dc.contributor.authorWittbold, Petra
dc.date.accessioned2023-06-20T16:55:00Z
dc.date.available2023-06-20T16:55:00Z
dc.date.issued2002
dc.description.abstractA scalar conservation law ut +div (u) = f is considered with the initial datum u|t=0 = u0 2 L1 loc(RN) and f 2 L1 loc(RN ×(0, T)) only. In this case the classical Krushkov condition can make no sense because of unboundedness of u, if no growth condition on is assumed. This obstacle is overcome by introducing the so-called renormalized entropy solution generalizing the classical one. Existence and uniqueness of such a solution is established.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15861
dc.identifier.issn0391-173X
dc.identifier.officialurlhttp://www.numdam.org/numdam-bin/feuilleter?j=ASNSP
dc.identifier.relatedurlhttp://www.numdam.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57417
dc.issue.number2
dc.journal.titleAnnali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV
dc.language.isoeng
dc.page.final327
dc.page.initial313
dc.publisherScuola Normale Superiore
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordNonlinear semigroup theory
dc.subject.keywordCauchy problem
dc.subject.keywordmild solutions
dc.subject.keywordRenormalized ntropy sub- and super-solutions
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleRenormalized entropy solutions of scalar conservation laws.
dc.typejournal article
dc.volume.number29
dcterms.referencesB. Andreianov - Ph. B´enilan - S. N. Kruzhkov, L1-theory of scalar conservation law with continuous flux function, to appear in J. Funct. Anal. L. Barth´elemy, Probl`eme d’obstacle pour une ´equation quasi-lin´eaire du premier ordre, Ann. Fac. Sci. Toulouse Math. (6) 9 (1988), 137–159. Ph. B´enilan - L. Boccardo - Th. Gallou¨et - R. Gariepy - M. Pierre - J.-L. Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241–273. Ph. B´enilan, ”Equations d’´evolution dans un espace de Banach quelconque et applications”, Th`ese d’Etat, Orsay, 1972. Ph. B´enilan - S. N. Kruzhkov, Conservation laws with continuous flux functions, Nonlinear Differential Equations Appl. 3 (1996), 395–419. Ph. B´enilan - A. Pazy - M. G. Crandall, ”Nonlinear Evolution Equations in Banach Spaces”,book to appear. D. Blanchard - F. Murat, Renormalised solutions of nonlinear parabolic problems with L1-data: existence and uniqueness, Proc. Royal Soc. Edinburgh Sect. A 127 (1997),1137–1152. D. Blanchard - H. Redwane, Solutions r´enormalis´ees d’´equations paraboliques `a deux nonlin ´earit´es, C.R. Acad. Sci. Paris S´er. I Math. 319 (1994), 831–835. J. Carrillo - P. Wittbold, Scalar conservation laws in L1 with boundary conditions, in preparation. J. Carrillo - P.Wittbold, Renormalized entropy solutions of quasilinear equations in divergence form, in preparation. M. G. Crandall, The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math. 12 (1972), 108–122. M. G. Crandall - T. Liggett, Generation of semi-groups of nonlinear transformations in general Banach spaces, Amer. J. Math. 93 (1971), 265–298. G. Dal Maso - F. Murat - L. Orsina - A. Prignet,Renormalized solutions of elliptic equations,to appear in Ann. Sc. Norm. Sup. di Pisa. G. Dal Maso - F. Murat - L. Orsina - A. Prignet, Definition and existence of renormalized solutions of elliptic equations with general measure data, C. R. Acad. Sci. Paris S´er. I Math.325 (1997), 481–486. R. J. di Perna - P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. 130 (1989), 321–366. A. Yu. Goritsky - E. Yu. Panov, Example of Nonuniqueness of Entropy Solutions in the Class of Locally Bounded Functions, Russian Journal of Math. Physics 6, No. 4(1999), 492–494. S. N. Kruzhkov, Generalized solutions of the Cauchy problem in the large for first-order nonlinear equations, Dokl. Akad. Nauk SSSR 187 (1969), 29–32; English tr. in Soviet.Math.Dokl. 10 (1969), 785–788. S. N. Kruzhkov, First-order quasilinear equations in several independent variables, Mat. Sbornik 81 (1970), 228–255; English tr. in Math. USSR Sb. 10 (1970), 217–243. F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Publ. Laboratoire d’Analyse Num´erique, Univ. Paris 6, R 93023 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublication48ac980d-beb1-40b0-acec-caec3a109b1c
relation.isAuthorOfPublication.latestForDiscovery48ac980d-beb1-40b0-acec-caec3a109b1c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carrillo18.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format

Collections