Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A methodology for building fuzzy rules from data

dc.book.titlePreference modelling and decision analysis
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorLópez, Victoria
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorVitoriano Villanueva, Begoña
dc.contributor.editorBurillo, P.
dc.contributor.editorBustince, H.
dc.contributor.editorDe Baets, B.
dc.contributor.editorFodor, J.
dc.date.accessioned2023-06-20T13:42:24Z
dc.date.available2023-06-20T13:42:24Z
dc.date.issued2009
dc.descriptionEuroFuse Workshop, September 16-18, 2009, Pamplona
dc.description.abstractExtraction of rules for classification and decision tasks from databases is an issue of growing importance as automated processes based on data are being required in these fields. Interpretability of rules is improved by defining classes for independent variables. Moreover, though more complex, a more realistic and flexible framework is attained when fuzzy classes are considered. In this paper, an inductive approach is taken in order to develop a general methodology for building fuzzy rules from databases. Three types of rules are built in order to be able of dealing with both categorical and numerical data.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30844
dc.identifier.isbn978-84-9769-242-7
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53453
dc.language.isoeng
dc.page.final38
dc.page.initial33
dc.page.total351
dc.publication.placePamplona
dc.publisherPublic University of Navarre
dc.relation.projectIDTIN2006-06190
dc.relation.projectIDCCGO7-UCM/ESP-2576
dc.relation.projectIDC3-0132
dc.rights.accessRightsopen access
dc.subject.cdu510.64
dc.subject.keywordRules induction
dc.subject.keywordFuzzy classification
dc.subject.keywordData Mining
dc.subject.keywordDecision Support Systems
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleA methodology for building fuzzy rules from dataen
dc.typebook part
dcterms.references[1] A. Amo, J. Montero, G. Biging, V. Cutello (2004). Fuzzy classification systems European Journal of Operational Research 156 (2): 495-507 [2] S. Destercke, S. Guillaume, B. Charnomordic (2007). Building an interpretable fuzzy rule base from data using Orthogonal Least Squares Application to a depollution problem, Fuzzy Sets and Systems, 158 (18): 2078-2094 [3] L.S. Iliadis (2005). A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation,Environmental Modelling & Software, 20 613-621 [4] E.H. Mamdani (1974). Application of Fuzzy Algorithms for the Control of a Dynamic Plant, Proc. IEE, 121 (12): 1585-1588 [5] J. Montero, D. Gómez, H. Bustince (2007). On the relevance of some families of fuzzy sets, Fuzzy sets and systems, 158 (22): 2439-2442 [6] J.T. Rodriguez, B. Vitoriano, J. Montero, A.Omaña (2008). A decision support tool for humanitarian organizations in natural disaster relief, in: D. Ruan et al. (eds), Computational Intelligence in Decision and Control. World Scientific, Singapore: p.600-605 [7] E.H. Ruspini (1969). A new approach to clustering,Inform. Control 15 22–32. [8] M. Öztürk, A. Tsoukiàs (2007). Modelling uncertain positive and negative reasons in decision aiding, Decision Support Systems,43 (4): 1512-1526 [9] R.R. Yager (2000). Targeted e-commerce marketing using fuzzy intelligent agents Intelligent Systems and their Applications,15 (6): 42-45
dspace.entity.typePublication
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublicationefbdfdd4-3d98-4463-813b-73beda8ff1dc
relation.isAuthorOfPublication.latestForDiscoveryddad170a-793c-4bdc-b983-98d313c81b03

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero223.pdf
Size:
130.35 KB
Format:
Adobe Portable Document Format