A methodology for building fuzzy rules from data
dc.book.title | Preference modelling and decision analysis | |
dc.contributor.author | Rodríguez González, Juan Tinguaro | |
dc.contributor.author | López, Victoria | |
dc.contributor.author | Montero De Juan, Francisco Javier | |
dc.contributor.author | Vitoriano Villanueva, Begoña | |
dc.contributor.editor | Burillo, P. | |
dc.contributor.editor | Bustince, H. | |
dc.contributor.editor | De Baets, B. | |
dc.contributor.editor | Fodor, J. | |
dc.date.accessioned | 2023-06-20T13:42:24Z | |
dc.date.available | 2023-06-20T13:42:24Z | |
dc.date.issued | 2009 | |
dc.description | EuroFuse Workshop, September 16-18, 2009, Pamplona | |
dc.description.abstract | Extraction of rules for classification and decision tasks from databases is an issue of growing importance as automated processes based on data are being required in these fields. Interpretability of rules is improved by defining classes for independent variables. Moreover, though more complex, a more realistic and flexible framework is attained when fuzzy classes are considered. In this paper, an inductive approach is taken in order to develop a general methodology for building fuzzy rules from databases. Three types of rules are built in order to be able of dealing with both categorical and numerical data. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30844 | |
dc.identifier.isbn | 978-84-9769-242-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53453 | |
dc.language.iso | eng | |
dc.page.final | 38 | |
dc.page.initial | 33 | |
dc.page.total | 351 | |
dc.publication.place | Pamplona | |
dc.publisher | Public University of Navarre | |
dc.relation.projectID | TIN2006-06190 | |
dc.relation.projectID | CCGO7-UCM/ESP-2576 | |
dc.relation.projectID | C3-0132 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 510.64 | |
dc.subject.keyword | Rules induction | |
dc.subject.keyword | Fuzzy classification | |
dc.subject.keyword | Data Mining | |
dc.subject.keyword | Decision Support Systems | |
dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
dc.subject.unesco | 1102.14 Lógica Simbólica | |
dc.title | A methodology for building fuzzy rules from data | en |
dc.type | book part | |
dcterms.references | [1] A. Amo, J. Montero, G. Biging, V. Cutello (2004). Fuzzy classification systems European Journal of Operational Research 156 (2): 495-507 [2] S. Destercke, S. Guillaume, B. Charnomordic (2007). Building an interpretable fuzzy rule base from data using Orthogonal Least Squares Application to a depollution problem, Fuzzy Sets and Systems, 158 (18): 2078-2094 [3] L.S. Iliadis (2005). A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation,Environmental Modelling & Software, 20 613-621 [4] E.H. Mamdani (1974). Application of Fuzzy Algorithms for the Control of a Dynamic Plant, Proc. IEE, 121 (12): 1585-1588 [5] J. Montero, D. Gómez, H. Bustince (2007). On the relevance of some families of fuzzy sets, Fuzzy sets and systems, 158 (22): 2439-2442 [6] J.T. Rodriguez, B. Vitoriano, J. Montero, A.Omaña (2008). A decision support tool for humanitarian organizations in natural disaster relief, in: D. Ruan et al. (eds), Computational Intelligence in Decision and Control. World Scientific, Singapore: p.600-605 [7] E.H. Ruspini (1969). A new approach to clustering,Inform. Control 15 22–32. [8] M. Öztürk, A. Tsoukiàs (2007). Modelling uncertain positive and negative reasons in decision aiding, Decision Support Systems,43 (4): 1512-1526 [9] R.R. Yager (2000). Targeted e-commerce marketing using fuzzy intelligent agents Intelligent Systems and their Applications,15 (6): 42-45 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ddad170a-793c-4bdc-b983-98d313c81b03 | |
relation.isAuthorOfPublication | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea | |
relation.isAuthorOfPublication | efbdfdd4-3d98-4463-813b-73beda8ff1dc | |
relation.isAuthorOfPublication.latestForDiscovery | ddad170a-793c-4bdc-b983-98d313c81b03 |
Download
Original bundle
1 - 1 of 1