Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An extremely pipelined FPGA implementation of a lossy hyperspectral image compression algorithm

dc.contributor.authorGonzález, Carlos
dc.contributor.authorBascones García, Daniel
dc.contributor.authorMozos Muñoz, Daniel
dc.date.accessioned2024-02-02T15:51:38Z
dc.date.available2024-02-02T15:51:38Z
dc.date.issued2020
dc.description.abstractSegmented and pipelined execution has been a staple of computing for the past decades. Operations over different values can be carried out at the same time speeding up computations. Hyperspectral image compression sequentially processes samples, exploiting local redundancies to generate a predictable data stream that can be compressed. In this paper, we take advantage of a Low Complexity Predictive Lossy Compression algorithm which can be executed over an extremely long pipeline of hundreds of stages. We can avoid most stalls and maintain throughput close to the theoretical maximum. The different steps operate over integers with simple arithmetic operations, so they are specially well-suited for our FPGA implementation. Results on a Virtex-7 show a maximum frequency of over 300Mhz for a throughput of over 290MB/s, with a space-qualified Virtex5 reaching 258MHz, being 5 times as fast as the previous FPGA designs. This shows that a modular pipelined approach is beneficial for these kinds of compression algorithms.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.identifier.citationD. Báscones, C. González and D. Mozos, "An Extremely Pipelined FPGA Implementation of a Lossy Hyperspectral Image Compression Algorithm," in IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7435-7447, Oct. 2020, doi: 10.1109/TGRS.2020.2982586.
dc.identifier.doi10.1109/TGRS.2020.2982586
dc.identifier.essn1558-0644
dc.identifier.issn0196-2892
dc.identifier.officialurlhttps://doi.org/10.1109/TGRS.2020.2982586
dc.identifier.urihttps://hdl.handle.net/20.500.14352/98415
dc.journal.titleIEEE Transactions on Geoscience and Remote Sensing
dc.language.isoeng
dc.publisherIEEE
dc.relation.projectIDTIN2017- 87237-P
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordFPGA
dc.subject.keywordHyperspectral Image
dc.subject.keywordCompression
dc.subject.keywordPipeline
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleAn extremely pipelined FPGA implementation of a lossy hyperspectral image compression algorithm
dc.typejournal article
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication7091b4d5-39d3-464a-be38-0863f757e2c9
relation.isAuthorOfPublication4c67f647-780c-4c6a-84dd-5962fb0a6260
relation.isAuthorOfPublication.latestForDiscovery7091b4d5-39d3-464a-be38-0863f757e2c9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pipelined_FPGA_Implementation.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format

Collections