Fluctuations in the level density of a fermi gas
dc.contributor.author | Relaño Pérez, Armando | |
dc.contributor.author | Leboeuf, P. | |
dc.contributor.author | Monastra, A. G. | |
dc.date.accessioned | 2023-06-20T10:49:15Z | |
dc.date.available | 2023-06-20T10:49:15Z | |
dc.date.issued | 2005-03-18 | |
dc.description | © 2005 The American Physical Society | |
dc.description.abstract | We present a theory that accurately describes the counting of excited states of a noninteracting fermionic gas. At high excitation energies the results reproduce Bethe's theory. At low energies oscillatory corrections to the many-body density of states, related to shell effects, are obtained. The fluctuations depend nontrivially on energy and particle number. Universality and connections with Poisson statistics and random matrix theory are established for regular and chaotic single-particle motion. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27771 | |
dc.identifier.doi | 10.1103/PhysRevLett.94.102502 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevLett.94.102502 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51284 | |
dc.issue.number | 10 | |
dc.journal.title | Physical Review Letters | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Nucleus | |
dc.subject.keyword | Formula | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Fluctuations in the level density of a fermi gas | |
dc.type | journal article | |
dc.volume.number | 94 | |
dcterms.references | [1] H. A. Bethe, Phys. Rev. 50, 332 (1936). [2] C. Bloch, Phys. Rev. 93, 1094 (1954). [3] N. Rosenzweig, Phys. Rev. 108, 817 (1957). [4] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, Reading, MA, 1969), Vol. I. [5] A. Gilbert and A. G.W. Cameron, Can. J. Phys. 43, 1446 (1965); A.V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975); K. Kataria, V. S. Ramamurthy, and S. S. Kapoor, Phys. Rev. C 18, 549 (1978); Y. Alhassid, G. F. Bertsch, and L. Fang, Phys. Rev. C 68, 044322 (2003). [7] G. H. Hardy and S. Ramanujan, Proc. London Math. Soc. 17, 75 (1918); H. Rademacher, Proc. London Math. Soc. 43, 241 (1937). [8] R. H. Fowler, Statistical Mechanics (Macmillan Company, New York, 1936). [9] M. C. Gutzwiller, J. Math. Phys. (N.Y.) 10, 1004 (1969); R. Balian and C. Bloch, Ann. Phys. (N.Y.) 69, 76 (1972). [10] K. Richter, D. Ullmo, and R. Jalabert, Phys. Rep. 276, 1 (1996). [11] P. Leboeuf and A. G. Monastra, Ann. Phys. (N.Y.) 297, 127 (2002). [12] P. Leboeuf, ‘‘Regularity and Chaos in the Nuclear Masses,’’ Lecture Notes in Physics, edited by J. M. Arias and M. Lozano (Springer-Verlag, Berlin, to be published); nucl-th/0406064. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 53fed635-944b-485a-b13a-ea8f9355b7aa | |
relation.isAuthorOfPublication.latestForDiscovery | 53fed635-944b-485a-b13a-ea8f9355b7aa |
Download
Original bundle
1 - 1 of 1