Crossover from a three-dimensional to purely two-dimensional vortex-glass transition in deoxygenated YBa_(2)Cu_(3)O_(7-δ) thin films

Thumbnail Image
Full text at PDC
Publication Date
Sefrioui, Zouhair
Arias Serna, Diego
Varela del Arco, María
Villegas, J. E.
López de la Torre, M. A.
Loos, G. D.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
Current-voltage (I-V) characteristics were used to investigate the response of the vortex-glass (VG) phase transition in high-quality epitaxial YBa_(2)Cu_(3)O_(7-δ) films in magnetic fields up to 7 T. We show that varying the oxygen content, the scaling analysis reveals a crossover from three-dimensional (3D) to a pure 2D VG transition with T_(g) = 0. At small oxygen deficiencies (7-δ = 6.75), the ρ-j curves scale according to the 3D VG model, which cannot be distinguished from a Bose-glass model from a scaling analysis with the magnetic field applied parallel to the c axis. At a lower oxygen content (7-δ = 6.48), the VG phase transition behaves analogous to the highly anisotropic Bi_(2)Sr_(2)CaCu_(2)O_(8) samples, showing a quasi-2D VG transition. For further deoxygenated samples (7-δ = 6.4), the result is consistent with a pure 2D vortex-glass model similar to that observed in the even more anisotropic Tl_(2)Ba_(2)CaCu_(2)O_(8) thin films. The estimated value of the anisotropy in high-quality oxygen-depleted samples is comparable to that of the highly anisotropic superconductors.
© 1999 The American Physical Society. Z.S. gratefully acknowledges financial support from Agencia Española de Cooperación International (AECI). G.D.L. thanks the sabbaticals SA 106/95 SAB1995-0685 to Universidad Complutense and Ministerio de Educación y Cultura. Financial support from CICYT Grant No. MAT94- 0604 is also acknowledged. We thank Professor J. L. Vicent for helpful discussions.
Unesco subjects
1) G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur, Rev. Mod. Phys., 66, 1125 (1994). 2) E. Brezin, D. R. Nelson, A. Thiaville, Phys. Rev. B, 31, 7124 (1985). 3) D. R. Nelson, Phys. Rev. Lett., 60, 1973 (1988). 4) H. Safar, P. L. Gammel, D. A. Huse, D. J. Bishop, J. P. Rice, D. M. Ginsberg, Phys. Rev. Lett., 69, 824 (1992). 5) M. Charalambous, J. Chaussy, P. Lejay, V. Vinokur, Phys. Rev. Lett., 71, 436 (1993). 6) U. Welp, J. A. Fendrich, W. K. Kwok, G. W. Crabtree, B. W. Veal, Phys. Rev. Lett., 76, 4809 (1996). 7) M. P. A. Fisher, Phys. Rev. Lett., 62, 1415 (1989). 8) D. S. Fisher, M. P. A. Fisher, D. A. Huse, Phys. Rev. B, 43, 130 (1991). 9) R. H. Koch, V. Foglietti, W. J. Gallagher, G. Coren, A. Gupta, M. P. A. Fisher, Phys. Rev. Lett., 63, 1511 (1989). 10) D. R. Nelson, V. M. Vinokur, Phys. Rev. Lett., 68, 2398 (1992). 11) D. R. Nelson, V. M. Vinokur, Phys. Rev. B, 48, 13, 060 (1993). 12) S. A. Griguera, E. Morré, E. Osquiguil, C. Balseiro, G. Nieva, F. de la Cruz, Phys. Rev. Lett., 81, 2348 (1998). 13) M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, Physica C, 167, 177 (1990). 14) L. I. Glazman, A. E. Koshelev, Phys. Rev. B, 43, 2835 (1991). 15) H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Yoshida, K. Kajimura, Phys. Rev. B, 50, 12, 959 (1994). 16) Hai-hu Wen, H. A. Radovan, F.-M. Kamm, P. Ziemann, S. L. Yan, L. Fang, M. S. Si, Phys. Rev. Lett., 80, 3859 (1998). 17) M. P. A. Fisher, T. A. Tokuyasu, A. P. Young, Phys. Rev. Lett., 66, 2931 (1991). 18) L. L. Daemen, et al., Phys. Rev. Lett., 70, 1167 (1993). 19) K. Takenaka, K. Mizuhashi, T. Takagi, S. Uchida, Phys. Rev. B, 50, 6534 (1994). 20) Lifang Hou, J. Deak, P. Metcalf, M. McElfresh, G. Preosti, Phys. Rev. B, 55, 11, 806 (1997). 21) C. C. Almasan, M. C. de Andrade, Y. Dalichaouch, J. J. Neumeier, C. L. Seaman, M. B. Maple, R. P. Guertin, M. V. Kuric, J. C. Garland, Phys. Rev. Lett., 69, 3812 (1992). 22) M. P. Maple, C. C. Almasan, C. L. Seaman, S. H. Han, K. Y. Yoshiara, M. Buchgeister, L. M. Paulius, B. W. Lee, D. A. Gajewski, R. F. Jarrdim, C. R. Fincher, Jr., Garciela B. Blanchet, R. P. Guertin, J. Supercond., 7, 97 (1994). 23) E. Osquiguil, M. Maenhoudt, B. Wuyts, Y. Bruynseraede, Appl. Phys. Lett., 60, 1627 (1992). 24) Katerina Moloni, Mark Friesen, Shi Li, Victor Souw, P. Metcalf, M. McElfresh, Phys. Rev. B, 56, 14, 784 (1997). 25) C. Dekker, W. Eidellooth, R. H. Koch, Phys. Rev. Lett., 68, 3347 (1992). 26) D. López, E. F. Righi, G. Nieva, F. de la Cruz, W. K. Kwok, J. A. Fendrich, G. W. Grabtree, L. Paulius, Phys. Rev. B, 53, R8895 (1996). 27) M. Tinkham, Introduction to Superconductivity, 2nd ed.(McGraw-Hill, New York, 1996). 28) L. Y. Glazman, A. E. Koshelev, Phys. Rev. B, 43, 2835 (1991).