Giant magnetoresistance in ferromagnet/superconductor superlattices

Thumbnail Image
Full text at PDC
Publication Date
Peña, V.
Sefrioui, Zouhair
Arias Serna, Diego
Martínez, J. L.
te Velthuis, S. G. E.
Hoffmann, A.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We show magnetoresistance in excess of 1000% in trilayers containing highly spin-polarized La_(0.7)Ca_(0.3)MnO_(3) and high-T_(c) superconducting YBa_(2)Cu_(3)O_(7). This large magnetoresistance is reminiscent of the giant magnetoresistance (GMR) in metallic superlattices but with much larger values, and originates at spin imbalance due to the injection of spin-polarized carriers. Furthermore, in contrast to ordinary GMR, the magnetoresistance is intimately related to the superconductivity in the YBa_(2)Cu_(3)O_(7) layer and vanishes in the normal state. This result, aside from its fundamental importance, may be of interest for the design of novel spintronic devices based on ferromagnet/superconductor structures.
© 2005 The American Physical Society. This work was supported by MCYT MAT 2002-2642 and CAM 07N/0032/2002 and Fundación Ramón Areces. We thank S. Takahashi and S. Maekawa for helpful conversations. The work at Argonne was supported by the Department of Energy, Basic Energy Sciences, Contract No. W-31-109-ENG-38.
Unesco subjects
[1] G. A. Prinz, Science, 282, 1660 (1998). [2] M. Julliere, Phys. Lett. 54A, 225 (1975). [3] J. S. Moodera, et al., Phys. Rev. Lett., 74, 3273 (1995). [4] T. Miyazaki, N. Tezuka, J. Magn. Magn. Mater., 139, L231 (1995). [5] R. Meservey, P. M. Tedrow, Phys. Rep., 238, 173 (1994). [6] M. A. M. Gijs and G. E. W. Bauer, Adv. Phys. 46, 285 (1997). [7] L. R.Tagirov, Phys. Rev. Lett., 83, 2058 (1999). [8] S. Takahashi, H. Imamura, S. Maekawa, Phys. Rev. Lett., 82, 3911 (1999). [9] S. Takahashi, T. Yamashita, H. Imamura, S. Maekawa, J. Magn. Magn. Mater., 240, 100 (2002). [10] M. N. Baibich, et al., Phys. Rev. Lett., 61, 2472 (1988). [11] A. F. Andreev, Zh. Eksp. Teor. Fiz., 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)]. [12] J. Y. Gu, et al., Phys. Rev. Lett., 89, 267001 (2002). [13] M. J. M. de Jong, C. W. J. Beenakker, Phys. Rev. Lett., 74, 1657 (1995). [14] R. J. Soulen, et al., Science, 282, 85 (1998). [15] D. Beckmann, H. B. Weber, H. v. Löhneysen, Phys. Rev. Lett., 93, 197003 (2004). [16] C. A. R. Sá de Melo, Phys. Rev. Lett., 79, 1933 (1997). [17] H. U. Habermeier, et al., Physica (Amsterdam), 364C, 298 (2001). [18] Z. Sefrioui, et al., Appl. Phys. Lett., 81, 4568 (2002). [19] Z. Sefrioui, et al., Phys. Rev. B, 67, 214511 (2003). [20] M. Varela, et al., Phys. Rev. Lett., 83, 3936 (1999). [21] G. P. Felcher, et al., Rev. Sci. Instrum., 58, 609 (1987). [22] F. S. Bergeret, A. F. Volkov, K. B. Efetov, Phys. Rev. B, 69, 174504 (2004).