Operators in vector sequence spaces. (Spanish: Operadores en espacios de sucesiones vectoriales)

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Real Academia de Ciencias Exactas, Físicas y Naturales
Google Scholar
Research Projects
Organizational Units
Journal Issue
For an arbitrary sequence of Banach spaces, the space of corresponding vector-valued, p  -summable sequences is considered, 1≤p<∞  . Each bounded linear operator from such a space into an arbitrary Banach space is identified by the corresponding coordinate sequence, that is, by the sequence of its restrictions to each summand. Simple criteria for an operator to be compact, weakly compact, Dieudonné, Dunford-Pettis and unconditionally convergent are given in terms of its coordinate sequence. Corresponding Banach space properties defined by the operator ideals mentioned above are reduced to the same properties for each summand.
UCM subjects
Unesco subjects
BOMBAL, F., y CEMBRANOS, P.: «Characterization of some classes of operators on spaces of vector-valued continuous functions». Math. Proc. Camb. Phil. Soc., 97, págs. 137-145(1985). CEMBRANOS, P.: «Algunas propiedades del espacio de Banach C(K, E)». Tesis doctoral. Publicación de la Universidad Complutense, 1982. GROTHENDIECK, A.: «Sur les applications linéaires faiblement compacts d'espaces du type C(K)». Cañad. J. of Math., 5, págs. 129-173 (1953). PELCZYNSKI, A.: «Banach spaces in which every unconditionally converging is weakly compact». Bull. Pol. Acad. Sci., 10 pág. 641-648 (1962). PELCZYNSKI, A.: «On strictly singular and strictly cosingular operators I». Bull. Pol. Acad. Sci., 13, págs. 31-36 (1965). PiETSCH, A.: Operator Ideals. Berlin, 1978. ROSENTHAL, H. P.: «On injective Banach spaces and the spaces Lx(^ for finite measures». Acta Math., 124, pág. 205-248 (1970).