Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Theoretical derivation of 1/ƒ noise in quantum chaos

Loading...
Thumbnail Image

Full text at PDC

Publication date

2004

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Faleiro E, Gómez J M G, Molina R A, Muñoz L, Relaño A and Retamosa J 2004 Theoretical Derivation of 1 / f Noise in Quantum Chaos Phys. Rev. Lett. 93 244101

Abstract

It was recently conjectured that 1/ƒ noise is a fundamental characteristic of spectral fluctuations in chaotic quantum systems. This conjecture is based on the power spectrum behavior of the excitation energy fluctuations, which is different for chaotic and integrable systems. Using random matrix theory, we derive theoretical expressions that explain without free parameters the universal behavior of the excitation energy fluctuations power spectrum. The theory gives excellent agreement with numerical calculations and reproduces to a good approximation the 1/ƒ (1/ƒ^(2)) power law characteristic of chaotic (integrable) systems. Moreover, the theoretical results are valid for semiclassical systems as well.

Research Projects

Organizational Units

Journal Issue

Description

©2004 The American Physical Society. We are particularly indebted to P. Leboeuf, O. Bohigas, and M. Robnik for enlightening discussions. This work is supported in part by Spanish Government Grants No. BFM2003-04147-C02 and No. FTN2003-08337-C04-04.

UCM subjects

Unesco subjects

Keywords

Collections