Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Gamma pseudo random number generators

dc.contributor.authorAlmaraz Luengo, Elena Salome
dc.date.accessioned2024-01-31T08:01:55Z
dc.date.available2024-01-31T08:01:55Z
dc.date.issued2022
dc.description.abstractCommunication, among others. Throughout history, different algorithms have been developed for the generation of such values and advances in computing have made them increasingly faster and more efficient from a computational point of view. These advances also allow the generation of higher-quality inputs (from the point of view of randomness and uniformity) for these algorithms that are easily tested by different statistical batteries such as NIST, Dieharder, or TestU01 among others. This article describes the existing algorithms for the generation of (independent and identically distributed—i.i.d.) Gamma distribution values as well as the theoretical and mathematical foundations that support their validity.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationElena Almaraz Luengo. 2023. Gamma Pseudo Random Number Generators. ACM Comput. Surv. 55, 4 (May 2023), 1–33. https://doi.org/10.1145/3527157
dc.identifier.doi10.1145/3527157
dc.identifier.essn1557-7341
dc.identifier.issn0360-0300
dc.identifier.officialurlhttps://doi.org/10.1145/3527157
dc.identifier.urihttps://hdl.handle.net/20.500.14352/96841
dc.issue.number4
dc.journal.titleACM Computing Surveys
dc.language.isoeng
dc.page.final33
dc.page.initial1
dc.publisherAssociation for Computing Machinery (ACM)
dc.rights.accessRightsrestricted access
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.unesco1207 Investigación Operativa
dc.titleGamma pseudo random number generatorsen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number85
dspace.entity.typePublication
relation.isAuthorOfPublication1c9068b2-8cdc-4211-ae24-f355b63f2ec4
relation.isAuthorOfPublication.latestForDiscovery1c9068b2-8cdc-4211-ae24-f355b63f2ec4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gamma_pseudo_random_number_generators.pdf
Size:
405.42 KB
Format:
Adobe Portable Document Format

Collections