Gamma pseudo random number generators
dc.contributor.author | Almaraz Luengo, Elena Salome | |
dc.date.accessioned | 2024-01-31T08:01:55Z | |
dc.date.available | 2024-01-31T08:01:55Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Communication, among others. Throughout history, different algorithms have been developed for the generation of such values and advances in computing have made them increasingly faster and more efficient from a computational point of view. These advances also allow the generation of higher-quality inputs (from the point of view of randomness and uniformity) for these algorithms that are easily tested by different statistical batteries such as NIST, Dieharder, or TestU01 among others. This article describes the existing algorithms for the generation of (independent and identically distributed—i.i.d.) Gamma distribution values as well as the theoretical and mathematical foundations that support their validity. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Elena Almaraz Luengo. 2023. Gamma Pseudo Random Number Generators. ACM Comput. Surv. 55, 4 (May 2023), 1–33. https://doi.org/10.1145/3527157 | |
dc.identifier.doi | 10.1145/3527157 | |
dc.identifier.essn | 1557-7341 | |
dc.identifier.issn | 0360-0300 | |
dc.identifier.officialurl | https://doi.org/10.1145/3527157 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/96841 | |
dc.issue.number | 4 | |
dc.journal.title | ACM Computing Surveys | |
dc.language.iso | eng | |
dc.page.final | 33 | |
dc.page.initial | 1 | |
dc.publisher | Association for Computing Machinery (ACM) | |
dc.rights.accessRights | restricted access | |
dc.subject.ucm | Investigación operativa (Estadística) | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.title | Gamma pseudo random number generators | en |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 85 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1c9068b2-8cdc-4211-ae24-f355b63f2ec4 | |
relation.isAuthorOfPublication.latestForDiscovery | 1c9068b2-8cdc-4211-ae24-f355b63f2ec4 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Gamma_pseudo_random_number_generators.pdf
- Size:
- 405.42 KB
- Format:
- Adobe Portable Document Format