Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On the canonical rings of covers of surfaces of minimal degree

dc.contributor.authorGallego Rodrigo, Francisco Javier
dc.contributor.authorPurnaprajna, Bangere P
dc.date.accessioned2023-06-20T09:28:41Z
dc.date.available2023-06-20T09:28:41Z
dc.date.issued2003-03-19
dc.descriptionFirst published in Transactions of the American Mathematical Society in Volume 355, Number 7, 2003, published by the American Mathematical Society
dc.description.abstractLet S be a regular surface of general type with at worst canonical singularities and with basepoint-free canonical system. Let X be its canonical image. It is well known that X must be a canonical surface or a minimal degree surface. The main result of the authors completely describes the number and degree of the generators of the canonical ring of S in the second case. More concretely, if r = deg(X) and n is the degree of the canonical map, then (1) if n = 2 and r = 1, the canonical ring is generated in degree 1, plus one generator in degree 4; (2) in the other cases, the canonical ring is generated in degree 1, plus r(n−2) generators in degree 2 and r −1 generators in degree 3. This result, together with previous results of Ciliberto and Green, describes when the canonical ring of S is generated in degree less than or equal to 2: X is not a surface of minimal degree other than the plane and, in this last case, n 6= 2. The authors also construct a series of non-trivial examples of the theorem and prove that some expected ones do not exist. Finally, the authors apply their results to Calabi-Yau threefolds, obtaining analogous results. The key point here is that, for a Calabi-Yau threefold, the general member of a big and base-point-free linear system is a surface of general type.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMCT
dc.description.sponsorshipUCM
dc.description.sponsorshipGeneral Research Fund of the University of Kansas at Lawrence
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12605
dc.identifier.doi10.1090/S0002-9947-03-03200-8
dc.identifier.issn1088-6850
dc.identifier.officialurlhttp://www.ams.org/home/page
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49665
dc.issue.number7
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final2732
dc.page.initial2715
dc.publisherAmerican Mathematical Society
dc.relation.projectIDBFM2000-0621
dc.relation.projectIDPR52/00-8862
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordSurfaces of general type
dc.subject.keywordCalabi-Yau threefolds
dc.subject.keywordCovering
dc.subject.keywordVarieties of minimal degree
dc.subject.keywordCanonical ring
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the canonical rings of covers of surfaces of minimal degree
dc.typejournal article
dc.volume.number355
dspace.entity.typePublication
relation.isAuthorOfPublication708fdd58-694b-4a58-8267-1013d3272036
relation.isAuthorOfPublication.latestForDiscovery708fdd58-694b-4a58-8267-1013d3272036

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2006onthecanonicalpdf.pdf
Size:
462.31 KB
Format:
Adobe Portable Document Format

Collections