Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Atomic-resolution studies of epitaxial strain release mechanisms in La_(1.85)Sr_(0.15)CuO_(4)/La_(0.67)Ca_(0.33)MnO_(3) superlattices

dc.contributor.authorBiskup Zaja, Nevenko
dc.contributor.authorDas, S.
dc.contributor.authorGonzález-Calbet, J. M.
dc.contributor.authorBernhard, C.
dc.contributor.authorVarela Del Arco, María
dc.date.accessioned2023-06-18T06:46:37Z
dc.date.available2023-06-18T06:46:37Z
dc.date.issued2015-05-26
dc.description© 2015 American Physical Society. We thank A. Lupini for the DM script used for quantification of the lattice constants (Fig. 4) and M. Watanabe for the plug-in for PCA. M.V. acknowledges discussions with J. Mitchell. N.B. and the electron microscopy performed at the Centro Nacional de Microscopia Electrónica (UCM) were sponsored by the ERC Starting Investigator Award No. STEMOX#239739. The research at the University of Fribourg was supported by the Schweizer Nationalfonds (SNF) Grants No. 200020-140225 and No. 200020-153660.
dc.description.abstractIn this paper we present an atomic-resolution electron microscopy study of superlattices (SLs) where the colossal magnetoresistant manganite La_(0.67)Ca_(0.33)MnO_(3) (LCMO) and the high critical temperature superconducting cuprate La_(1.85)Sr_(0.15)CuO_(4 (LSCO) are combined. Although good quality epitaxial growth can be achieved, both the choice of substrate and the relatively large lattice mismatch between these materials (around 2%) have a significant impact on the system properties [Phys. C 468, 991 (2008); Nature (London) 394, 453 (1998)]. Our samples, grown by pulsed laser deposition, are epitaxial and exhibit high structural quality. By means of cutting-edge electron microscopy and spectroscopy techniques we still find that the epitaxial strain is accommodated by a combination of defects, such as interface steps and antiphase boundaries in the manganite. These defects result in inhomogeneous strain fields through the samples. Also, some chemical unhomogeneities are detected, up to the point that novel phases nucleate. For example, at the LCMO/LSCO interface the ABO3-type manganite adopts a tetragonal LSCO-like structure forming localized layers that locally resemble the composition of La_(2/3)Ca_(4/3)MnO_(4). Structural distortions are detected in the cuprate as well, which may extend over lateral distances of several unit cells. Finally, we also analyze the influence of the substrate-induced strain by examining superlattices grown on two different substrates: (LaAlO_(3))_(0.3)(Sr_(2)AlTaO_(6))_(0.7) (LSAT) and LaSrAlO_(4) (LSAO). We observe that SLs grown on LSAT, which are nonsuperconducting, present reduced values of the c axis compared to superlattices grown on LSAO (which are fully superconducting). This finding points to the fact that the proper distance between copper planes in LSCO is essential in obtaining superconductivity in cuprates.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipERC Starting Investigator Award
dc.description.sponsorshipSchweizer Nationalfonds (SNF)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33037
dc.identifier.doi10.1103/PhysRevB.91.205132
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.91.205132
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24141
dc.issue.number20
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDSTEMOX#239739
dc.relation.projectID200020-140225
dc.relation.projectID200020-153660
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordElectron-energy-loss
dc.subject.keywordCritical-temperature
dc.subject.keywordCrystal-structure
dc.subject.keywordSuperconductivity
dc.subject.keywordOxides
dc.subject.keywordLa_(1.85)Sr_(0.15)CuO_(4)
dc.subject.keywordPerovskite
dc.subject.keywordDependence
dc.subject.keywordPressure
dc.subject.keywordSpectra.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleAtomic-resolution studies of epitaxial strain release mechanisms in La_(1.85)Sr_(0.15)CuO_(4)/La_(0.67)Ca_(0.33)MnO_(3) superlattices
dc.typejournal article
dc.volume.number91
dcterms.references[1] H. Sato, Phys. C, 468, 991 (2008). [2] J.-P. Locquet, J. Perret, J. Fompeyrine, E. Machler, J. W. Seo, G. Van Tendeloo, Nature (London), 394, 453 (1998). [3] A. K. Saxena, High-Temperature Superconductors (Springer, Berlin/Heidelberg, 2012). [4] E. Dagotto, T. Hotta, A. Moreo, Phys. Rep., 344, 1 (2001). [5] A. A. R. Fernandes, J. Santamaría, S. L. Bud’ko, O. Nakamura, J. Guimpel, I. K. Schuller, Phys. Rev. B, 44, 7601 (1991). [6] D. T. Jover, R. J. Wijngaarden, R. Griessen, E. M. Haines, J. L. Tallon, R. S. Liu, Phys. Rev. B, 54, 10175 (1996). [7] M. Merz, P. Nagel, C. Pinta, A. Samartsev, H. v. Löhneysen, M. Wissinger, S. Uebe, A. Assmann, D. Fuchs, S. Schuppler, Phys. Rev. B, 82, 174416 (2010). [8] H. Sato, M. Naito, Phys. C, 274, 221 (1997). [9] I. Bozovic, G. Logvenov, I. Belca, B. Narimbetov, I. Sveklo, Phys. Rev. Lett., 89, 107001 (2002). [10] J. Salafranca, S. Okamoto, Phys. Rev. Lett., 105, 256804 (2010). [11] J. Salafranca, J. Rincón, J. Tornos, C. León, J. Santamaría, E. Dagotto, S. J. Pennycook, M. Varela, Phys. Rev. Lett., 112, 196802 (2014). [12] C. Visani, J. Tornos, N. M. Nemes, M. Rocci, C. León, J. Santamaría, S. G. E. te Velthuis, Y. Liu, A. Hoffmann, J. W. Freeland, M. García-Hernández, M. R. Fitzsimmons, B. J. Kirby, M. Varela, S. J. Pennycook, Phys. Rev. B, 84, 060405(R) (2011). [13] Z. Sefrioui, M. Varela, V. Peña, D. Arias, C. León, J. Santamaría, J. E. Villegas, J. L. Martínez, W. Saldarriaga, P. Prieto, Appl. Phys. Lett., 81, 4568 (2002). [14] Z. Sefrioui, D. Arias, V. Peña, J. E. Villegas, M. Varela, P. Prieto, C. León, J. L. Martínez, J. Santamaría, Phys. Rev. B, 67, 214511 (2003). [15] V. Peña, Z. Sefrioui, D. Arias, C. León, J. Santamaría, M. Varela, S. J. Pennycook, J. L. Martínez, Phys. Rev. B, 69, 224502 (2004). [16] J. Stahn, J. Chakhalian, C. Niedermayer, J. Hoppler, T. Gutberlet, J. Voigt, F. Treubel, H.-U. Habermeier, G. Cristiani, B. Keimer, C. Bernhard, Phys. Rev. B, 71, 140509 (2005). [17] G. M. De Luca, G. Ghiringhelli, C. A. Perroni, V. Cataudella, F. Chiarella, C. Cantoni, A. R. Lupini, N. B. Brookes, M. Huijben, G. Koster, G. Rijnders, M. Salluzzo, Nat. Commun., 5, 5626 (2014). [18] V. K. Malik, I. Marozau, S. Das, B. Doggett, D. K. Satapathy, M. A. Uribe-Laverde, N. Biskup, M. Varela, C. W. Schneider, C. Marcelot, J. Stahn, C. Bernhard, Phys. Rev. B, 85, 054514 (2012). [19] S. Das, K. Sen, I. Marozau, M. A. Uribe-Laverde, N. Biskup, M. Varela, Y. Khaydukov, O. Soltwedel, T. Keller, M. Dobeli, C. W. Schneider, C. Bernhard, Phys. Rev. B, 89, 094511 (2014). [20] G. H. Rao, J. R. Sun, J. K. Liang, W. Y. Zhou, Phys. Rev. B, 55, 3742 (1997). [21] R. J. Cava, A. Santoro, D. W. Johnson, W. W. Rhodes, Phys. Rev. B, 35, 6716 (1987). [22] R. D. Shannon, R. A. Oswald, J. B. Parise, B. H. T. Chai, P. Byszewski, A. Pajaczkowska, R. Sobolewski, J. Solid State Chem., 98, 90 (1992). [23] B. C. Chakoumakos, D. G. Schlom, M. Urbanik, J. Luine, J. Appl. Phys., 83, 1979 (1998). [24] S. J. Pennycook, Ultramicroscopy, 30, 58 (1989). [25] M. Bosman, M. Watanabe, D. T. L. Alexander, V. J. Keast, Ultramicroscopy, 106, 1024 (2006). [26] G. A. Botton, C. C. Appel, A. Horsewell, W. M. Stobbs, J. Microsc., 180, 211 (1995). [27] T. G. Sparrow, B. G. Williams, C. N. R. Rao, J. M. Thomas, Chem. Phys. Lett., 108, 547 (1984). [28] W. G. Waddington, P. Rez, I. P. Grant, C. J. Humphreys, Phys. Rev. B, 34, 1467 (1986). [29] A. Llordes, A. Palau, J. Gázquez, M. Coll, R. Vlad, A. Pomar, J. Arbiol, R. Guzmán, S. Ye, V. Rouco, F. Sandiumenge, S. Ricart, T. Puig, M. Varela, D. Chateigner, J. Vanacken, J. Gutiérrez, V. Moshchalkov, G. Deutscher, C. Magen, X. Obradors, Nat. Mater., 11, 329 (2012). [30] R. F. Klie, J. P. Buban, M. Varela, A. Franceschetti, C. Jooss, Y. Zhu, N. D. Browning, S. T. Pantelides, S. J. Pennycook, Nature (London), 435, 475 (2005). [31] M. L. Ruiz-González, R. Cortés-Gil, A. Torres-Pardo, D. González-Merchante, J. M. Alonso, J. M. González-Calbet, Chemistry, 20, 1237 (2014). [32] M. Varela, M. P. Oxley, W. Luo, J. Tao, M. Watanabe, A. R. Lupini, S. T. Pantelides, S. J. Pennycook, Phys. Rev. B, 79, 085117 (2009). [33] B. Cui, C. Song, G. Y. Wang, H. J. Mao, F. Zeng, F. Pan, Sci. Rep., 3, 2542 (2013).
dspace.entity.typePublication
relation.isAuthorOfPublication671e957a-9daa-4bd5-9876-eee854146782
relation.isAuthorOfPublication63e453a5-31af-4eeb-9a5f-21c2edbbb733
relation.isAuthorOfPublication.latestForDiscovery671e957a-9daa-4bd5-9876-eee854146782

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VarelaArcoM 02 libre.pdf
Size:
4.88 MB
Format:
Adobe Portable Document Format

Collections