Limit speed of particles in a non-homogeneous electric field under friction
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.contributor.author | Gonzalez Gascón, F. | |
dc.date.accessioned | 2023-06-20T09:32:54Z | |
dc.date.available | 2023-06-20T09:32:54Z | |
dc.date.issued | 2007 | |
dc.description.abstract | It is shown that under certain conditions the limit speed of electric charges moving in a space of type R-n of dimension one or two, under isotropic friction, is preserved under some perturbations. These results hold when relativistic equations of motion are considered. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14988 | |
dc.identifier.doi | 10.1088/1751-8113/40/50/008 | |
dc.identifier.issn | 1751-8113 | |
dc.identifier.officialurl | http://iopscience.iop.org/1751-8121/40/50/008/pdf/1751-8121_40_50_008.pdf | |
dc.identifier.relatedurl | http://iopscience.iop.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49871 | |
dc.issue.number | 50 | |
dc.journal.title | Journal of physics A: Mathematical and theoretical | |
dc.language.iso | eng | |
dc.page.final | 15039 | |
dc.page.initial | 15029 | |
dc.publisher | IOP Publishing Ltd | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 530.1 | |
dc.subject.keyword | Physics Multidisciplinary | |
dc.subject.keyword | Physics Mathematical | |
dc.subject.ucm | Física matemática | |
dc.title | Limit speed of particles in a non-homogeneous electric field under friction | |
dc.type | journal article | |
dc.volume.number | 40 | |
dcterms.references | González-Gascón F, Peralta-Salas D and Vegas-Montaner J M 1999 Limit velocity of charged particles in a constant electromagnetic field under friction Phys. Lett. A 251 39–43 Ball JMand Carr J 1976 Decay to zero in critical cases of second order ordinary differential equations of Duffing type Arch. Ration. Mech. Anal. 63 47–57 Dumortier F and Rousseau C 1990 Cubic Li´enard equations with linear damping Nonlinearity 3 1015–39 Naulin R and Urbina J 1998 Asymptotic integration of linear ordinary differential equations of order ‘n’ Acta Math. Hung. 80 129–41 Mustafa O G and Rogovchenko Y V 2002 Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations Nonlinear Anal. 51 339–68 Mustafa O G and Rogovchenko Y V 2004 Global existence and asymptotic behavior of solutions of nonlinear differential equations Funkcial. Ekvac. 47 167–86 Rogovchenko Y V 1980 On the asymptotic behavior of solutions for a class of second order nonlinear differential equations Collect. Math. 49 113–20 Parker G 1977 Projectile motion with air resistance quadratic in the speed Am. J. Phys. 45 606–10 Erlichson H 1983 Maximum projectile range with drag and lift Am. J. Phys. 51 357–62 Kemp H R 1987 Trajectories of projectiles in air for small times of flight Am. J. Phys. 55 1099–102 Tan A, Frick C H and Castillo O 1987 The fly ball trajectory: an older approach revisited Am. J. Phys. 55 37–40 Mohazzabi P and Shea J H 1996 High-altitude free fall Am. J. Phys. 646 1242–6 Deakin M A B and Troup G J 1998 Approximate trajectories for projectile motion with air resistance Am. J. Phys. 66 34–7 Warburton R D H and Wang J 2004 Analysis of asymptotic projectile motion with air resistance using the Lambert W function Am. J. Phys. 72 1404–7 Millikan R A 1913 On the elementary electrical charge and the Avogadro constant Phys. Rev. 2 109–143 Millikan R A 1917 Phil. Mag. 34 1 Millikan R A 1924 The Electron (Chicago: University of Chicago Press) Anderson D L 1964 The Discovery of the Electron (Princeton, NJ: Van Nostrand-Reinhold) Thomson J J 1899 On the masses of the ions in gases at low pressures Phil. Mag. 5 547–67 48 Rohrlich F 1990 Classical Charged Particles (Reading, MA: Addison-Wesley) (Advanced Book Classics) Einstein A 1909 Zum gegenw¨artigen Stand des Strahlungsproblems Phys. Z. 10 185–93 Ritz W and Einstein A 1909 Phys. Z. 11 323–4 Shahin G Y 2006 Features of projectile motion in the special theory of relativity Eur. J. Phys. 27 173–81 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication.latestForDiscovery | 134ad262-ecde-4097-bca7-ddaead91ce52 |
Download
Original bundle
1 - 1 of 1