Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Limit speed of particles in a non-homogeneous electric field under friction

dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.contributor.authorGonzalez Gascón, F.
dc.date.accessioned2023-06-20T09:32:54Z
dc.date.available2023-06-20T09:32:54Z
dc.date.issued2007
dc.description.abstractIt is shown that under certain conditions the limit speed of electric charges moving in a space of type R-n of dimension one or two, under isotropic friction, is preserved under some perturbations. These results hold when relativistic equations of motion are considered.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14988
dc.identifier.doi10.1088/1751-8113/40/50/008
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://iopscience.iop.org/1751-8121/40/50/008/pdf/1751-8121_40_50_008.pdf
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49871
dc.issue.number50
dc.journal.titleJournal of physics A: Mathematical and theoretical
dc.language.isoeng
dc.page.final15039
dc.page.initial15029
dc.publisherIOP Publishing Ltd
dc.rights.accessRightsrestricted access
dc.subject.cdu530.1
dc.subject.keywordPhysics Multidisciplinary
dc.subject.keywordPhysics Mathematical
dc.subject.ucmFísica matemática
dc.titleLimit speed of particles in a non-homogeneous electric field under friction
dc.typejournal article
dc.volume.number40
dcterms.referencesGonzález-Gascón F, Peralta-Salas D and Vegas-Montaner J M 1999 Limit velocity of charged particles in a constant electromagnetic field under friction Phys. Lett. A 251 39–43 Ball JMand Carr J 1976 Decay to zero in critical cases of second order ordinary differential equations of Duffing type Arch. Ration. Mech. Anal. 63 47–57 Dumortier F and Rousseau C 1990 Cubic Li´enard equations with linear damping Nonlinearity 3 1015–39 Naulin R and Urbina J 1998 Asymptotic integration of linear ordinary differential equations of order ‘n’ Acta Math. Hung. 80 129–41 Mustafa O G and Rogovchenko Y V 2002 Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations Nonlinear Anal. 51 339–68 Mustafa O G and Rogovchenko Y V 2004 Global existence and asymptotic behavior of solutions of nonlinear differential equations Funkcial. Ekvac. 47 167–86 Rogovchenko Y V 1980 On the asymptotic behavior of solutions for a class of second order nonlinear differential equations Collect. Math. 49 113–20 Parker G 1977 Projectile motion with air resistance quadratic in the speed Am. J. Phys. 45 606–10 Erlichson H 1983 Maximum projectile range with drag and lift Am. J. Phys. 51 357–62 Kemp H R 1987 Trajectories of projectiles in air for small times of flight Am. J. Phys. 55 1099–102 Tan A, Frick C H and Castillo O 1987 The fly ball trajectory: an older approach revisited Am. J. Phys. 55 37–40 Mohazzabi P and Shea J H 1996 High-altitude free fall Am. J. Phys. 646 1242–6 Deakin M A B and Troup G J 1998 Approximate trajectories for projectile motion with air resistance Am. J. Phys. 66 34–7 Warburton R D H and Wang J 2004 Analysis of asymptotic projectile motion with air resistance using the Lambert W function Am. J. Phys. 72 1404–7 Millikan R A 1913 On the elementary electrical charge and the Avogadro constant Phys. Rev. 2 109–143 Millikan R A 1917 Phil. Mag. 34 1 Millikan R A 1924 The Electron (Chicago: University of Chicago Press) Anderson D L 1964 The Discovery of the Electron (Princeton, NJ: Van Nostrand-Reinhold) Thomson J J 1899 On the masses of the ions in gases at low pressures Phil. Mag. 5 547–67 48 Rohrlich F 1990 Classical Charged Particles (Reading, MA: Addison-Wesley) (Advanced Book Classics) Einstein A 1909 Zum gegenw¨artigen Stand des Strahlungsproblems Phys. Z. 10 185–93 Ritz W and Einstein A 1909 Phys. Z. 11 323–4 Shahin G Y 2006 Features of projectile motion in the special theory of relativity Eur. J. Phys. 27 173–81
dspace.entity.typePublication
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscovery134ad262-ecde-4097-bca7-ddaead91ce52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
04.pdf
Size:
252.42 KB
Format:
Adobe Portable Document Format

Collections