Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

On some delayed nonlinear parabolic equations modeling CO oxidation

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorCasal, Alfonso C.
dc.contributor.authorStich, Michael
dc.date.accessioned2023-06-20T09:34:56Z
dc.date.available2023-06-20T09:34:56Z
dc.date.issued2006-10
dc.description.abstractIt is known that several features of many react ion-diffusion systems can be studied through an associated Complex Ginzburg-Landau Equation (CGLE). In particular, the study of the catalytic CO oxidation leads to the Krischer-Eiswirth-Ertl model, a nonlinear parabolic system, which can be controlled by a delayed feedback term. For the control of its uniform oscillations, we had already studied the corresponding delayed CGLE, developing first a pseudolinearization principle, of a very broad applicability, which led us to a range of parameters for the stability of those oscillations. In this work we first present some simulations which confirm the mentioned range of parameters, and gives other ranges for different behavior. Out of the setting of the CGLE, the dynamics is richer, so we present another method for the study of the existence, (monotonicity methods) and stability (with the pseudolinearization principle), directly for the mentioned parabolic system.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGISGPI (Spain) and the Univ. Politecnica de Madrid
dc.description.sponsorshipEU
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15357
dc.identifier.issn1201-3390
dc.identifier.officialurlhttp://www.mat.ucm.es/~jidiaz/Publicaciones/ARTICULOS_PDF/A133nodef.pdf
dc.identifier.relatedurlhttp://www.watam.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49960
dc.issue.numberS
dc.journal.titleDynamics of Continuous Discrete and Impulsive Systems: Series A - Mathematical Analysis
dc.language.isospa
dc.page.final426
dc.page.initial413
dc.publisherWatam Press
dc.relation.projectIDMTM2004-07590-C03-01
dc.relation.projectIDRTNHPRN-CT-2002-00274
dc.rights.accessRightsrestricted access
dc.subject.cdu517.977
dc.subject.keywordreaction-diffusion systems
dc.subject.keywordfeedback
dc.subject.keywordchaos
dc.subject.keywordpseudolinearization principle
dc.subject.keywordnonlinear parabolic systems
dc.subject.keyworddelayed PDE's
dc.subject.keywordComplex Ginzburg-Landau Equation
dc.subject.keywordcomplexity
dc.subject.keywordCO oxidation
dc.subject.ucmFísica matemática
dc.titleOn some delayed nonlinear parabolic equations modeling CO oxidation
dc.typejournal article
dc.volume.number13
dcterms.referencesH. Amann, Dynamic theory of quasilinear parabolic equations: II. Reaction-diffusion systems, Diff. Int. Equ.3 (1990), 13-75. A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1993. Ph. Benilan, M.G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces. Book in preparation. C. Beta, Controlling Chemical Turbulence in Surface Reactions, PhD thesis, Free University Berlin (2004) C. Beta and A. S., Mikhailov, Controlling spatiotemporal chaos in oscillatory reaction diffusion systems by time-delay autosynchronization, Physica D, 199(2004), 173-184. M. E. Bleich and J. E. S. Socolar, Controlling spatiotemporal dynamics with time-delay feedback, Phys. Rev. E, 54(1996) R17-R20. A. C. Casal, J. I. Díaz, On the principle of pseudo-linearized stability: aplication to some delayed nonlinear parabolic equations. Proceedings of the 4th World Congress of Nonlinear Analysts (Orlando, FL, June 30- July 7, 2004). To be published as a special volume of Nonlinear Analysis, Theory, Methods and Applications. A. C. Casal, J. I. Díaz, On the Pseudo-Linearization and Quasi-Linearization Principles, In CD-Rom Actas XIX CEDYA / IX CMA, Servicio de Publicaciones de la Univ. Carlos III, Madrid, 2005. A. C. Casal, J. I. Díaz, J. F. Padial, L. Tello, On the stabilization of uniform oscillations for the complex Ginzburg-Landau equation by means of a global delayed mechanism.In CD-Rom Actas XVIII CEDYA/ VIII CMA, Servicio de Publicaciones de la Univ. de Tarragona, 2003. H. Brezis, Opérateurs Maximaux Monotones, North Holland, Amsterdam, 1973. G.,Ertl, Catalysis, Science and Technology, Vol. 4, edited by J. P. Anderson, Springer, Berlin, 1983. M., Ipsen, L., Kramer, and P. B., Sörensen, Pysics Reports, 337(2000), 193-235. K., Krischer, M., Eiswirth, and G., Ertl, Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organization. J. Chem. Phys., 96(1992) 9161-9172. C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992. K., Pyragas, Continuous control of chaos by self-contolling feedback, Phys. Lett. A, 170(1992), 421-426. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Second edition, Pitman Monographs, Longman, Essex, 1995.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
42.pdf
Size:
259.68 KB
Format:
Adobe Portable Document Format

Collections