Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Computable Aggregations

dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorGonzález Del Campo Rodríguez Barbero, Ramón
dc.contributor.authorGarmendia Salvador, Luis
dc.contributor.authorGómez González, Daniel
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.date.accessioned2023-06-17T22:10:21Z
dc.date.available2023-06-17T22:10:21Z
dc.date.issued2017-10-07
dc.description.abstractIn this paper, we postulate computation as a key element in assuring the consistency of a family of aggregation functions so that such a family of operators can be considered an aggregation rule. In particular, we suggest that the concept of an aggregation rule should be defined from a computational point of view, focusing on the computational properties of such an aggregation, i.e., on the manner in which the aggregation values are computed. The new algorithmic definition of aggregation we propose provides an operational approach to aggregation, one that is based upon lists of variable length and that produces a solution even when portions of data are inserted or deleted. Among other advantages, this approach allows the construction of different classifications of aggregation rules according to the programming paradigms used for their computation or according to their computational complexity.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/45076
dc.identifier.citationMontero, J., González-del-Campo, R., Garmendia, L., Gómez, D., Rodríguez, J.T.: Computable aggregations. Information Sciences. 460-461, 439-449 (2018). https://doi.org/10.1016/j.ins.2017.10.012
dc.identifier.doi10.1016/j.ins.2017.10.012
dc.identifier.issn0020-0255
dc.identifier.officialurlhttps//doi.org/10.1016/j.ins.2017.10.012
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0020025517310058
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18168
dc.journal.titleInformation Sciences
dc.language.isoeng
dc.publisherElsevier Science Inc
dc.relation.projectIDTIN2015-66471-P
dc.relation.projectIDCASI-CAM-CM (S2013/ICCE-2845)
dc.relation.projectIDUCM (910149)
dc.rights.accessRightsopen access
dc.subject.cdu519.21
dc.subject.keywordAggregation operator
dc.subject.keywordAggregation function
dc.subject.keywordAggregation rule
dc.subject.ucmProbabilidades (Matemáticas)
dc.titleComputable Aggregationsen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublicatione0e021d9-603b-4e00-bcde-b4fe302dd2c9
relation.isAuthorOfPublication3da93fd6-23bb-4122-a8e6-e2cee2ed6749
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication.latestForDiscoverye0e021d9-603b-4e00-bcde-b4fe302dd2c9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero280Preprint.pdf
Size:
479.82 KB
Format:
Adobe Portable Document Format

Collections