Eberlein–Šmulyan theorem for Abelian topological groups
dc.contributor.author | Bruguera Padró, M. Montserrat | |
dc.contributor.author | Martín Peinador, Elena | |
dc.contributor.author | Tarieladze, Vaja | |
dc.date.accessioned | 2023-06-20T09:28:55Z | |
dc.date.available | 2023-06-20T09:28:55Z | |
dc.date.issued | 2004 | |
dc.description.abstract | Leaning on a remarkable paper of Pryce, the paper studies two independent classes of topological Abelian groups which are strictly angelic when endowed with their Bohr topology. Some extensions are given of the Eberlein–ˇSmulyan theorem for the class of topological Abelian groups, and finally, for a large subclass of the latter, Bohr angelicity is related to the Schur property. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12709 | |
dc.identifier.doi | 10.1112/S0024610704005629 | |
dc.identifier.issn | 0024-6107 | |
dc.identifier.officialurl | http://jlms.oxfordjournals.org/content/74/2.toc | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49678 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of the London Mathematical Society. Second Series | |
dc.language.iso | eng | |
dc.page.final | 355 | |
dc.page.initial | 341 | |
dc.publisher | Oxford University Press | |
dc.relation.projectID | BFM 2003-05878 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Angelic spaces | |
dc.subject.keyword | Bohr angelicity | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Eberlein–Šmulyan theorem for Abelian topological groups | |
dc.type | journal article | |
dc.volume.number | 70 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication | 26c13c99-272d-4261-8a6b-caef686ac19b | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |
Download
Original bundle
1 - 1 of 1