Dense vertical nanoplates arrays and nanobelts of indium doped ZnO grown by thermal treatment of ZnS-In_2O_3 powders

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science B.V.
Google Scholar
Research Projects
Organizational Units
Journal Issue
Dense vertical arrays of indium doped ZnO nanoplates have been grown by thermal treatment of compacted ZnS-In_2O_3 powders with 0.35 at% of In. The distribution of nanoplates is related to the grain structure of the substrate. Only a small content of In has been detected in the plates by energy dispersive X-ray spectroscopy, but comparison with previous works shows that its presence in the precursor determines the growth of the nanoplates. Increase in the amount of In in the precursor leads to the growth of long indium doped ZnO nanobelts. Cathodoluminescence spectra of the nanobelts show a 23 meV blue shift of the band edge emission.
(C) 2010 Elsevier B.V. This work was supported by MEC (Projects CSD2009-00013 and MAT2009-07882) and BSCH-UCM (Group 910146).
Unesco subjects
[1] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J.G. Hou, Chem. Phys. Lett. 387 (2004) 466. [2] Y. Ding, X.Y. Kong, Z.L. Wang, Phys. Rev. B 70 (2004) 235408. [3] H.J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Christiansen, U. Gosele, M. Zacharias, Nanotechnology 17 (2006) S231. [4] L. Xu, Y. Su, Y. Chen, H. Xiao, L. Zhu, Q. Zhou, S. Li, J. Phys. Chem. B 110 (2006) 6637. [5] L.M. Li, C.C. Li, Z.F. Du, B.S. Zou, H.C. Yu, Y.G. Wang, T.H. Wang, Nanotechnology 18 (2007) 225504. [6] H. Gao, H. Ji, X. Zhang, H. Lu, Y. Liang, J. Vac. Sci. Technol. B 26 (2008) 585. [7] J. Jie, G. Wang, X. Han, J.G. Hou, J. Phys. Chem. B 108 (2004) 17027. [8] C.W. Na, S.Y. Bae, J. Park, J. Phys. Chem. B 109 (2005) 12785. [9] L. Wu, X. Zhang, Z. Wang, Y. Liang, H. Xu, J. Phys. D: Appl. Phys. 41 (2008) 195406. [10] B. Alemán, P. Ferna´ndez, J. Piqueras, Appl. Phys. Lett. 95 (2009) 013111. [11] H.J. Yuan, S.S. Xie, D.F. Liu, X.Q. Yan, Z.P. Zhou, L.J. Ci, J.X. Wang, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, Chem. Phys. Lett . 371 (2003) 337. [12] W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Nanotechnology 16 (2005) 1469. [13] L. Khomenkova, P. Ferna´ndez, J. Piqueras, Cryst. Growth Des. 7 (2007) 836. [14] Y.W. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Chem. Phys. 123 (2005) 134701. [15] Y. Ortega, P. Ferna´ndez, J. Piqueras, J. Appl. Phys. 105 (2009) 054315. [16] H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science 300 (2003) 1249. [17] J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, D. Steeves, B. Kimball, W. Porter, Appl. Phys. A 78 (2004) 539. [18] X.H. Zhang, Y.C. Liu, X.H. Wang, S.J. Chen, G.R. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X. w. Fan, J. Phys.: Condens. Matter 17 (2005) 3035. [19] J. Grym, P. Ferna´ndez, J. Piqueras, Nanotechnology 16 (2005) 931. [20] J.G. Wen, J.Y. Lao, D.Z. Wang, T.M. Kyaw, Y.L. Foo, Z.F. Ren, Chem. Phys. Lett. 372 (2003) 717. [21] X.Y. Kong, Z.L. Wang, Appl. Phys. Lett. 84 (2004) 975.