Path Optimization Using Metaheuristic Techniques for a Surveillance Robot

dc.contributor.authorPeñacoba-Yagüe, Mario
dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorMariolis, Ioannis
dc.date.accessioned2024-11-26T14:30:38Z
dc.date.available2024-11-26T14:30:38Z
dc.date.issued2023-10-11
dc.description.abstractThis paper presents an innovative approach to optimize the trajectories of a robotic surveillance system, employing three different optimization methods: genetic algorithm (GA), particle swarm optimization (PSO), and pattern search (PS). The research addresses the challenge of efficiently planning routes for a LiDAR-equipped mobile robot to effectively cover target areas taking into account the capabilities and limitations of sensors and robots. The findings demonstrate the effectiveness of these trajectory optimization approaches, significantly improving detection efficiency and coverage of critical areas. Furthermore, it is observed that, among the three techniques, pattern search quickly obtains feasible solutions in environments with good initial trajectories. On the contrary, in cases where the initial trajectory is suboptimal or the environment is complex, PSO works better. For example, in the high complexity map evaluated, PSO achieves 86.7% spatial coverage, compared to 85% and 84% for PS and GA, respectively. On low- and medium-complexity maps, PS is 15.7 and 18 s faster in trajectory optimization than the second fastest algorithm, which is PSO in both cases. Furthermore, the fitness function of this proposal has been compared with that of previous works, obtaining better results.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationPeñacoba, M., Sierra-García, J. E., Santos, M., & Mariolis, I. (2023). Path Optimization Using Metaheuristic Techniques for a Surveillance Robot. Applied Sciences, 13(20), 11182.
dc.identifier.doi10.3390/app132011182
dc.identifier.officialurlhttps://www.mdpi.com/2076-3417/13/20/11182
dc.identifier.urihttps://hdl.handle.net/20.500.14352/111082
dc.issue.number20
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.final11203
dc.page.initial11182
dc.publisherMdpi
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordRobotics
dc.subject.keywordSurveillance
dc.subject.keywordInspection
dc.subject.keywordOptimization
dc.subject.keywordGenetic algorithm
dc.subject.keywordParticle swarm
dc.subject.keywordPattern search
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titlePath Optimization Using Metaheuristic Techniques for a Surveillance Robot
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-13-11182.pdf
Size:
5.89 MB
Format:
Adobe Portable Document Format

Collections