Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A model of topological quantization of the electromagnetic field

dc.book.titleFundamental Problems in Quantum Physics
dc.contributor.authorFernández-Rañada, Antonio
dc.date.accessioned2023-06-20T21:09:04Z
dc.date.available2023-06-20T21:09:04Z
dc.date.issued1995
dc.descriptionInternational Symposium on Fundamental Problems in Quantum Physics (1993. Oviedo). © 1995 Kluwer Academic Publishers.
dc.description.abstractA recently proposed topological model of the electromagnetic field is described, which is based in the existence of electromagnetic knots, standard solutions of the Maxwell equations, characterized by the linking numbers n and m of the electric and magnetic vectors, the magnetic and electric helicities having the values h_(mag) = 2nћ, h_(e)l = 2mћ. The model coincides locally with the classical Maxwell standard theory, but it is globally nonequivalent because its topological properties imply what is called a hidden nonlinearity: the fields span only a nonlinear subset of the solutions of a linear equation. Two consequences of the topological structure are important: the classical expression for the difference between the numbers of right handed and left handed photons is equal to n + m, having thus a topological interpretation, and the electric charge is quantized, the fundamental value being close to 14/3 times de electron charge.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24975
dc.identifier.doi10.1007/978-94-015-8529-3_26
dc.identifier.isbn0-7923-3670-4
dc.identifier.officialurlhttp://dx.doi.org/10.1007/978-94-015-8529-3_26
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60824
dc.issue.number73
dc.page.final277
dc.page.initial267
dc.publisherKluwer Academic Publ.
dc.relation.ispartofseriesFundamental Theories of Physics
dc.rights.accessRightsmetadata only access
dc.subject.cdu537
dc.subject.keywordTopological Quantization
dc.subject.keywordElectromagnetic Fields
dc.subject.keywordKnots.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleA model of topological quantization of the electromagnetic field
dc.typebook part
dcterms.references1. Atiyah, M., 1990, The Geometry and Physics of Knots, (Cambridge: The University Press). 2. Bott, R. and Tu, L.W., 1982, Differential Forms in Algebraic Topology ,( New York: Springer). 3. Hopf, H., 1931, Math. Ann., 104, 637–665. 4. Kuznetsov, E.A. and Mikhailov, A.V., 1980, Phys. Lett., 77A, 37–38. 5. Moffatt, H.K., 1969, J. Fluid Mech., 35, 117–129 6. Moffatt, H.K., 1981, J. Fluid Mech., 106, 27–47. 7. Nash, Ch. and Sen, S., 1982, Topology and Geometry for Physicists ,( London: Academic). 8. Rañada, A.F., 1989, Lett. Math. Phys., 18, 97–106. 9. Rañada, A.F., 1990a, in Solitons and Applications, V G Makhankov, V K Fedyanin, and O K Pashaev, eds. ( Singapore: World Scientific ), pp. 180–194. 10. Rañada, A.F., 1990b, J. Phys. A: Math. Gen., 23, L815 820. 11. Rañada, A.F., 1991, Fundamental problems in Classical and quantum dynamics, J.A. Ellison and H. Urberall, eds.(London: Gordon and Breach ), pp. 95–117. 12. Rañada, A.F., 1992a, J. Phys. A: Math Gen, 25, 1621 1641. 13. Rañada, A.F., 1992b, Eur. J. Phys, 13, 70–76. 14. Rañada, A.F., 1993, to be published. 15. Rañada, A.F. and Trueba, J.L., 1994, to be published. 16. Tait, P.G., 1911, Scientific Papers, Vol. I (Cambridge: The University Press ), pp. 136–150. 17. Whittaker, E., 1910, A History of the Theories of Aether and Electricity (reprint 1973, New York: Humanities Press).
dspace.entity.typePublication

Download