Wave Front Depinning Transition in Discrete One-Dimensional Reaction-Diffusion Systems

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of nonlinear oscillators with nearest-neighbor coupling and controlled by constant external forces. A theory of the depinning transition for these systems, including scaling laws and asymptotics of wave fronts, is presented and confirmed by numerical calculations.
Unesco subjects
J. P. Keener, SIAM J. Appl. Math. 47, 556 (1987). J. P. Keener and J. Sneyd, Mathematical Physiology (Springer, New York, 1998), Chap. 9. A. E. Bugrim, A. M. Zhabotinsky, and I. R. Epstein, Biophys. J. 73, 2897 (1997); J. Keizer, G.D. Smith, S. Ponce Dawson, and J. E. Pearson, Biophys. J. 75, 595 (1998). G. Grüner, Rev. Mod. Phys. 60, 1129 (1988); A. A. Middleton, Phys. Rev. Lett. 68, 670 (1992). H. S. J. van der Zant, T. P. Orlando, S. Watanabe, and S. H. Strogatz, Phys. Rev. Lett. 74, 174 (1995). F. R. N. Nabarro, Theory of Crystal Dislocations (Oxford University Press, Oxford, 1967). P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, UK, 1995), Chap. 10. ] M. Löcher, G.A. Johnson, and E. R. Hunt, Phys. Rev. Lett. 77, 4698 (1996). L. L. Bonilla, J. Galán, J. A. Cuesta, F. C. Martínez, and J. M. Molera, Phys. Rev. B 50, 8644 (1994); L. L. Bonilla, G. Platero, and D. Sánchez, Phys. Rev. B 62, 2786 (2000); A. Wacker, in Theory and Transport Properties of Semiconductor Nanostructures, edited by E. Schöll (Chapman and Hall, New York, 1998), Chap. 10. A. Carpio, L. L. Bonilla, A. Wacker, and E. Schöll, Phys. Rev. E 61, 4866 (2000). K. Kladko, I. Mitkov, and A. R. Bishop, Phys. Rev. Lett. 84, 4505 (2000). I. Mitkov, K. Kladko, and J. E. Pearson, Phys. Rev. Lett. 81, 5453 (1998). J. R. King and S. J. Chapman (to be published). B. Zinner, J. Differ. Equ. 96, 1 (1992); A.-M. Filip and S. Venakides, Commun. Pure Appl. Math. 52, 693 (1999). A. Carpio, S. J. Chapman, S. Hastings, and J. B. McLeod, Eur. J. Appl. Math. 11, 399 (2000). J. Frenkel and T. Kontorova, Phys. Z. Sowjetunion 13, 1 (1938). If we have ln0 # un0, such that un $ un11 2 2un 1 un21 1 F 2 Agun and ln # ln11 2 2ln 1 ln21 1 F 2 Agln, then lnt # unt for all later times. lnt and unt are called subsolutions and supersolutions, respectively (see Ref. [15]). R. Hobart, J. Appl. Phys. 36, 1948 (1965). V. L. Indenbom, Sov. Phys. Crystallogr. 3, 193 (1958). J. B. McLeod (private communication). L. L. Bonilla, J. Stat. Phys. 46, 659 (1987). A. Carpio, L. L. Bonilla, and G. Dell’Acqua, Phys. Rev. E (to be published); A. Carpio and L. L. Bonilla (unpublished).