Motion of wave fronts in semiconductor superlattices

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
An analysis of wave front motion in weakly coupled doped semiconductor superlattices is presented. If a dimensionless doping is sufficiently large, the superlattice behaves as a discrete system presenting front propagation failure and the wave fronts can be described near the threshold currents J(i) (i= 1,2) at which they depin and move. The wave front velocity scales with current as \J-J(i)\(1/2). If the dimensionless doping is low enough, the superlattice behaves as a continuum system and wave fronts are essentially shock waves whose velocity obeys an equal area rule.
Unesco subjects
H. T. Grahn, R. J. Haug, W. M¨uller and K. Ploog, Phys. Rev. Lett. 67, 1618 (1991); J. Kastrup, H. T. Grahn, K. Ploog, F. Prengel, A. Wacker and E. Sch¨oll, Appl. Phys. Lett. 65, 1808 (1994); J. Kastrup, F. Prengel, H. T. Grahn, K. Ploog and E. Sch¨oll, Phys. Rev. B 53, 1502 (1996). J. Kastrup, R. Klann, H.T. Grahn, K. Ploog, L.L. Bonilla, J. Gal´an, M. Kindelan, M. Moscoso, and R. Merlin, Phys. Rev. B 52, 13761 (1995); J. Kastrup, R. Hey, K.H. Ploog, H.T. Grahn, L. L. Bonilla, M. Kindelan, M. Moscoso, A. Wacker and J. Gal´an, Phys. Rev. B 55, 2476 (1997); E. Schomburg, K. Hofbeck, J. Grenzer, T. Blomeier, A. A. Ignatov, K. F. Renk, D.G. Pavel’ev, Yu. Koschurinov, V. Ustinov, A. Zukhov, S. Ivanov and P.S. Kop’ev, Appl. Phys. Lett. 71, (1997); Y. Zhang, J. Kastrup, R. Klann, K.H. Ploog and H. T. Grahn, Phys. Rev. Lett. 77, 3001 (1996); K. J. Luo, H. T. Grahn, K. H. Ploog and L. L. Bonilla, Phys. Rev. Lett. 81, 1290 (1998); J. C. Cao and X.L. Lei, Phys. Rev. B 60, 1871 (1999). L.L. Bonilla, J. Gal´an, J.A. Cuesta, F.C. Mart´ınez and J. M. Molera, Phys. Rev. B 50, 8644 (1994); A. Wacker, in Theory and transport properties of semiconductor nanostructures, edited by E. Sch¨oll (Chapman and Hall, New York, 1998). Chapter 10. M. B¨uttiker and H. Thomas, Phys. Rev. Lett. 38, 78 (1977); A. Sibille, J. F. Palmier, F. Mollot, H. Wang and J.C. Esnault, Phys. Rev. B 39, 6272 (1989). L. L. Bonilla, M. Kindelan, M. Moscoso and S. Venakides, SIAM J. Appl. Math. 57, 1588 (1997). A. Carpio, L. L. Bonilla, A. Wacker and E. Sch¨oll, Phys. Rev. E 61, 4866 (2000). J. P. Keener, SIAM J. Appl. Math. 47, 556 (1987). J.P. Keener and J. Sneyd, Mathematical Physiology (Springer, New York, 1998). Chapter 9. A. E. Bugrim, A.M. Zhabotinsky and I.R. Epstein, Biophys. J. 73, 2897 (1997). G Gr¨uner, Rev. Mod. Phys. 60, 1129 (1988); A.A. Middleton, Phys. Rev. Lett. 68, 670 (1992). H. S. J. van der Zant, T. P. Orlando, S. Watanabe and S. H. Strogatz, Phys. Rev. Lett. 74, 174 (1995); S. Flach and M. Spicci, J. Phys. C 11, 321 (1999). M. L¨ocher, G.A. Johnson and E.R. Hunt, Phys. Rev. Lett. 77, 4698 (1996). F.R.N. Nabarro, Theory of Crystal Dislocations (Oxford University Press, Oxford, 1967). P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics (Cambridge University Press, Cambridge, 1995). Chapter 10. A. Carpio and L.L. Bonilla, Phys. Rev. Lett. (2001), to appear. L. L. Bonilla, G. Platero and D. S´anchez, Phys. Rev. B 62, 2786 (2000). L. L. Bonilla, in Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, edited by F.-J. Niedernostheide (Springer-Verlag, Berlin, 1995), page 1. F. J. Higuera and L. L. Bonilla, Physica D 57, 161 (1992); L. L. Bonilla, I. R. Cantalapiedra, G. Gomila and J. M. Rub´ı, Phys. Rev. E 56, 1500 (1997). Refs. [5] and [18] consider current self-oscillations mediated by monopoles in SL with D = 0 or by dipoles in the hiperbolic limit of the Gunn effect, respectively. We can use these studies to describe self-oscillations in SL with D 6= 0. The only thing we need to change is to substitute our equal-area formulas (23) or (B2) instead of the equal-area formulas considered in those papers. If we have ln(0) ≤ un(0) such that u˙n ≥ D(un) (un+1 − 2un+un−1)/−v(un) (un−un−1)/+J−v(un), and ˙ ln ≤ D(ln) (ln+1−2ln+ln−1)−v(ln) (ln−ln−1)/+J −v(ln), then ln(t) ≤ un(t) for all later times. ln(t) and un(t) are called sub and supersolutions, respectively. See Ref. [6]. The use of comparison principles is restricted to spatially discrete or continuous differential equations which are first order in time. For applications to parabolic partial differential equations, see M.H. Protter and H.F. Weinberger, Maximum principles in differential equations (Springer, New York, 1984). A. Carpio, S.J. Chapman, S. Hastings, J.B. McLeod, Eur. J. Appl. Math. 11, 399 (2000). S. Flach, Y. Zolotaryuk and K. Kladko, Phys. Rev. E 59, 6105 (1999). See paragraph below Eq. (27). B. Zinner, J. Diff. Eqs. 96, 1 (1992); A.-M. Filip and S. Venakides, Comm. Pure Appl. Math. 52, 693 (1999). L. L. Bonilla, J. Statist. Phys. 46, 659 (1987). B. W. Knight and G. A. Peterson, Phys. Rev. 147, 617 (1966); J. D. Murray, J. Fluid Mech. 44, 315 (1970).