On a complete rigid Leibniz non-Lie algebra in arbitrary dimension
dc.contributor.author | Ancochea Bermúdez, José María | |
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2023-06-19T13:21:35Z | |
dc.date.available | 2023-06-19T13:21:35Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We show that the only indecomposable solvable Leibniz non-Lie algebra L0 with nilradical of maximal nilpotence index is rigid in any dimension, andmoreover that it is complete, i.e., only possesses inner derivations. The possible contractions of L0 onto Lie algebras are obtained. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MICINN | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21282 | |
dc.identifier.doi | 10.1016/j.laa.2012.12.048 | |
dc.identifier.issn | 0024-3795 | |
dc.identifier.officialurl | https//doi.org/10.1016/j.laa.2012.12.048 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0024379513000542 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33293 | |
dc.issue.number | 8 | |
dc.journal.title | Linear Algebra and its Applications | |
dc.language.iso | eng | |
dc.page.final | 3407 | |
dc.page.initial | 3397 | |
dc.publisher | Elsevier Science | |
dc.relation.projectID | MTM2010-18556 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.55 | |
dc.subject.keyword | Leibniz algebra | |
dc.subject.keyword | Rigid | |
dc.subject.keyword | Contractions | |
dc.subject.keyword | Deformations | |
dc.subject.keyword | Complete | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | On a complete rigid Leibniz non-Lie algebra in arbitrary dimension | en |
dc.type | journal article | |
dc.volume.number | 438 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8afd7745-e428-4a77-b1ff-813045b673fd | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 8afd7745-e428-4a77-b1ff-813045b673fd |
Download
Original bundle
1 - 1 of 1