Estimation of the orientation term of the general quadrature transform from a single n-dimensional fringe pattern
dc.contributor.author | Quiroga Mellado, Juan Antonio | |
dc.contributor.author | Servín Guirado, Manuel | |
dc.contributor.author | Marroquín Zaleta, José Luis | |
dc.contributor.author | Crespo Vázquez, Daniel | |
dc.date.accessioned | 2023-06-20T10:37:27Z | |
dc.date.available | 2023-06-20T10:37:27Z | |
dc.date.issued | 2005-03 | |
dc.description | © 2005 Optical Society of America. We acknowledge the economic support of this work given by project DPI2002-02104 of the Ministerio de Ciencia y Tecnología of Spain and by Consejo Nacional de Ciencia y Tecnología, México. Figure 6(a) is courtesy of NDT Expert, Toulouse, France; www.ndt-expert.fr. | |
dc.description.abstract | The spatial orientation of the fringe has been demonstrated to be a key point in the reliable phase demodulation from a single n-dimensional fringe pattern regardless of the frequency spectrum of the signal. The recently introduced general n-dimensional quadrature transform (GQT) makes explicit the importance of the fringe orientation in the demodulation process. The GQT is a quadrature operator that transforms cos φ into -sin φ-where φ is the modulating phase-and it is composed of two terms: an orientation factor directly related to the fringe's spatial orientation and an isotropic n-dimensional generalization of the one-dimensional Hilbert transform. We present a method for the determination of the orientation factor in a general n-dimensional case and its application to the demodulation of a single fringe pattern by the GQT. We have tested the algorithm with simulated as well as real photoelastic fringe patterns with good results. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia y Tecnología of Spain | |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología, México | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/23074 | |
dc.identifier.doi | 10.1364/JOSAA.22.000439 | |
dc.identifier.issn | 1084-7529 | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/JOSAA.22.000439 | |
dc.identifier.relatedurl | http://www.opticsinfobase.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50809 | |
dc.issue.number | 3 | |
dc.journal.title | Journal of The Optical Society Of America A-Optics Image Science and Vision | |
dc.language.iso | eng | |
dc.page.final | 444 | |
dc.page.initial | 439 | |
dc.publisher | Optical Society of America | |
dc.relation.projectID | DPI2002-02104 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Phase | |
dc.subject.keyword | Demodulation | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Estimation of the orientation term of the general quadrature transform from a single n-dimensional fringe pattern | |
dc.type | journal article | |
dc.volume.number | 22 | |
dcterms.references | 1. T. Kreis, Holographic Interferometry (Akademie Verlag, Berlin, 1996). 2. J. L. Marroquín, R. Rodríguez-Vera, and M. Servín, ‘‘Local phase from local orientation by solution of a sequence of linear systems”, J. Opt. Soc. Am. A 15, 1536–44 (1998). 3. M. Servín, J. L. Marroquín, and F. J. Cuevas, ‘‘Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms”, J. Opt. Soc. Am. A 18, 689–695 (2001). 4. K. G. Larkin, D. J. Bone, and M. A. Oldfield, ‘‘Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform”, J. Opt. Soc. Am. A 18, 1862–1870 (2001). 5. M. Servín, J. A. Quiroga, and J. L. Marroquín, ‘‘General n-dimensional quadrature transform and its application to interferogram demodulation”, J. Opt. Soc. Am. A 20, 925–934 (2003). 6. J. A. Quiroga, M. Servín, and F. J. Cuevas, ‘‘Modulo 2 p fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm”, J. Opt. Soc. Am. A 19, 1524–1531 (2002). 7. X. Zhou, J. P. Baird, and J. F. Arnold, ‘‘Fringe-orientation estimation by use of a Gaussian gradient filter and neighboring-direction averaging”, Appl. Opt. 38,795–804 (1999). 8. J. A. Quiroga and M. Servín, ‘‘Isotropic n-dimensional fringe pattern normalization”, Opt. Commun. 224, 221–227 (2003). 9. K. Ramesh, Digital Photoelasticity (Springer-Verlag, Berlin, 2000) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1c171089-8e25-448f-bcce-28d030f8f43a | |
relation.isAuthorOfPublication.latestForDiscovery | 1c171089-8e25-448f-bcce-28d030f8f43a |
Download
Original bundle
1 - 1 of 1