Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Estimation of the orientation term of the general quadrature transform from a single n-dimensional fringe pattern

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorServín Guirado, Manuel
dc.contributor.authorMarroquín Zaleta, José Luis
dc.contributor.authorCrespo Vázquez, Daniel
dc.date.accessioned2023-06-20T10:37:27Z
dc.date.available2023-06-20T10:37:27Z
dc.date.issued2005-03
dc.description© 2005 Optical Society of America. We acknowledge the economic support of this work given by project DPI2002-02104 of the Ministerio de Ciencia y Tecnología of Spain and by Consejo Nacional de Ciencia y Tecnología, México. Figure 6(a) is courtesy of NDT Expert, Toulouse, France; www.ndt-expert.fr.
dc.description.abstractThe spatial orientation of the fringe has been demonstrated to be a key point in the reliable phase demodulation from a single n-dimensional fringe pattern regardless of the frequency spectrum of the signal. The recently introduced general n-dimensional quadrature transform (GQT) makes explicit the importance of the fringe orientation in the demodulation process. The GQT is a quadrature operator that transforms cos φ into -sin φ-where φ is the modulating phase-and it is composed of two terms: an orientation factor directly related to the fringe's spatial orientation and an isotropic n-dimensional generalization of the one-dimensional Hilbert transform. We present a method for the determination of the orientation factor in a general n-dimensional case and its application to the demodulation of a single fringe pattern by the GQT. We have tested the algorithm with simulated as well as real photoelastic fringe patterns with good results.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología of Spain
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología, México
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23074
dc.identifier.doi10.1364/JOSAA.22.000439
dc.identifier.issn1084-7529
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.22.000439
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50809
dc.issue.number3
dc.journal.titleJournal of The Optical Society Of America A-Optics Image Science and Vision
dc.language.isoeng
dc.page.final444
dc.page.initial439
dc.publisherOptical Society of America
dc.relation.projectIDDPI2002-02104
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPhase
dc.subject.keywordDemodulation
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleEstimation of the orientation term of the general quadrature transform from a single n-dimensional fringe pattern
dc.typejournal article
dc.volume.number22
dcterms.references1. T. Kreis, Holographic Interferometry (Akademie Verlag, Berlin, 1996). 2. J. L. Marroquín, R. Rodríguez-Vera, and M. Servín, ‘‘Local phase from local orientation by solution of a sequence of linear systems”, J. Opt. Soc. Am. A 15, 1536–44 (1998). 3. M. Servín, J. L. Marroquín, and F. J. Cuevas, ‘‘Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms”, J. Opt. Soc. Am. A 18, 689–695 (2001). 4. K. G. Larkin, D. J. Bone, and M. A. Oldfield, ‘‘Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform”, J. Opt. Soc. Am. A 18, 1862–1870 (2001). 5. M. Servín, J. A. Quiroga, and J. L. Marroquín, ‘‘General n-dimensional quadrature transform and its application to interferogram demodulation”, J. Opt. Soc. Am. A 20, 925–934 (2003). 6. J. A. Quiroga, M. Servín, and F. J. Cuevas, ‘‘Modulo 2 p fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm”, J. Opt. Soc. Am. A 19, 1524–1531 (2002). 7. X. Zhou, J. P. Baird, and J. F. Arnold, ‘‘Fringe-orientation estimation by use of a Gaussian gradient filter and neighboring-direction averaging”, Appl. Opt. 38,795–804 (1999). 8. J. A. Quiroga and M. Servín, ‘‘Isotropic n-dimensional fringe pattern normalization”, Opt. Commun. 224, 221–227 (2003). 9. K. Ramesh, Digital Photoelasticity (Springer-Verlag, Berlin, 2000)
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA54.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format

Collections