Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Simple Expected Volatility (SEV) Index: Application to SET50 Index Options

dc.contributor.authorWiphatthanananthakul, Chatayan
dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-20T09:17:49Z
dc.date.available2023-06-20T09:17:49Z
dc.date.issued2009-03-24
dc.descriptionThis paper was written while the first author was visiting the Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, in autumn 2008. The first author wishes to acknowledge the financial support of the Stock Exchange of Thailand, while the second author wishes to thank the Australian Research Council for financial support, and the Erasmus School of Economics for their gracious hospitality and excellent working environment.
dc.description.abstractIn 2003, the Chicago Board Options Exchange (CBOE) made two key enhancements to the volatility index (VIX) methodology based on S&P options. The new VIX methodology seems to be based on a complicated formula to calculate expected volatility. In this paper, with the use of Thailand’s SET50 Index Options data, we modify the apparently complicated VIX formula to a simple relationship, which has a higher negative correlation between the VIX for Thailand (TVIX) and SET50 Index Options. We show that TVIX provides more accurate forecasts of option prices than the simple expected volatility (SEV) index, but the SEV index outperforms TVIX in forecasting expected volatility. Therefore, the SEV index would seem to be a superior tool as a hedging diversification tool because of the high negative correlation with the volatility index.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.sponsorshipAustralian Research Council
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/8698
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49263
dc.issue.number16
dc.language.isoeng
dc.page.total39
dc.relation.ispartofseriesDocumentos de trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.keywordFinancial markets
dc.subject.keywordModel selection
dc.subject.keywordNew products
dc.subject.keywordPrice forecasting
dc.subject.keywordTime series
dc.subject.keywordVolatility forecasting
dc.subject.ucmFinanzas
dc.titleA Simple Expected Volatility (SEV) Index: Application to SET50 Index Options
dc.typetechnical report
dc.volume.number2009
dcterms.referencesAkaike, H. (1974). A new look at the statistical model identification. IEEE Transaction on Automatic Control, AC-19, 716-723. Bakshi, G., C. Cao and Z. Chen (1997). Empirical performance of the alternative pricing models. Journal of Finance, 52(5), 2003-2049. Beckers, S. (1981). Standard deviations implied in option prices as predictors of future stock price variability. Journal of Banking and Finance, 5, 363-381. Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal Political Economy, 81, 637-654. Blair, B.J., S.H. Poon and S.J. Taylor (2001). Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high frequency index returns. Journal of Econometrics, 105, 5-26. Chiras, D.P. and S. Manaster (1978). The information content of implied volatility. Review of Financial Studies, 6, 659-681. Christensen, B.J. and N.R. Prabhala (1998). The relation content of option prices and a test of market efficiency. Journal of Financial Economics, 6, 213-234. Dennis, P., S. Mayhew and C. Stiver (2006). Stock returns, implied volatility innovations, and the asymmetric volatility phenomenon. Journal of Financial and Quantitative Analysis, 41, 381-406. Fleming, J. (1998). The quality of market volatility forecasts implied by S&P100 index option prices. Journal of Empirical Finance, 5, 317-345. Fleming, J., and R.E. Whaley (1995). Predicting stock market volatility: a new measure. Journal of Futures Markets, 15, 295-302. Harvey, C.R. and R.E. Whaley (1992). Market volatility prediction and the efficiency of the S&P 100 index option market. Journal of Financial Economics, 31, 43-73. Hull, J. and A. White (1987). The pricing of options on assets with stochastic volatilities. Journal of Finance, 52, 885-899. Jorion, P. (1995). Predicting volatility in the foreign exchange market. Journal of Finance, 50, 507-528. Latane, H.A. and R.J. Rendleman (1976). Standard deviations of stock return variance: towards an understanding of stochastic implied volatilities. Review of Financial Studies, 6, 293-326. Melino, A. and S. Turnbull (1990). The pricing of foreign currency options with stochastic volatility. Journal of Econometrics, 45, 139-265. Nandi, S. (1996). Pricing and hedging index options under stochastic volatility: an empirical examination (Undated). Federal Reserve Bank of Atlanta Working Paper, 96-9. Available at SSRN: http://ssrn.com/abstract=4244 . Noh, J., R.F. Engle and A. Kane (1994). Forecasting volatility and option prices of the S&P 500 index. Journal of Derivatives, 2, 17-30. Poon, S.H. and P.F. Pop (2000). Trading volatility spreads: a test of index option market efficiency. European Financial Management, 6, 235-260. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464. Whaley, R.E. (2000). The investor fear gauge. Journal of Portfolio Management, 26, 12-26.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0916.pdf
Size:
286.78 KB
Format:
Adobe Portable Document Format