Optical inspection of liquid crystal variable retarder inhomogeneities

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorUribe Patarroyo, Néstor R.
dc.contributor.authorVargas Balbuena, Javier
dc.contributor.authorÁlvarez Herrero, Alberto
dc.contributor.authorBelenguer Dávila, Tomás
dc.date.accessioned2023-06-20T03:35:21Z
dc.date.available2023-06-20T03:35:21Z
dc.date.issued2010-02-01
dc.descriptionThis paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. We thank the European Space Agency for economic support of this work given by the “Validation of liquid crystal variable retarders for solar orbiter polarization modulation package” project, reference number 22334/09/NL/SFe.
dc.description.abstractLiquid crystal variable retarders (LCVRs) are starting to be widely used in optical systems because of their capacity to provide a controlled variable optical retardance between two orthogonal components of incident polarized light or to introduce a known phase shifting (PS) between coherent waves, both by means of an applied voltage. Typically, the retardance or PS introduced by an LCVR is not homogeneous across the aperture. On the one hand, the LCVR glass substrates present a global bend that causes an overall variation of the retardance or PS. On the other hand, in the manufacturing process of an LCVR, there sometimes appears a set of micro-air bubbles that causes local retardance or PS inhomogeneities. In this work, we present an interferometric technique based on a Mach-Zehnder interferometer that is insensitive to vibrations and capable of inspecting and characterizing the LCVR's retardance or PS inhomogeneities. The feasibility of the proposed method is demonstrated in the experimental results, where the LCVR retardance is measured with an error of about 0:2 rad. The thickness of possible micro-air bubbles is obtained with a resolution of about 50 nm.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Space Agency
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22800
dc.identifier.citation1. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004). 2. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A: Pure Appl. Opt. 2, 216–222 (2000). 3. L. J. November and L. M.Wilkins, “Liquid crystal polarimeter: a solid state imager for solar vector magnetic fields,” Opt. Eng. 34, 1659–1668 (1995). 4. A. M. Gandorfer, “Instrumentation for optical magnetometry,” in SOLMAG 2002, Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference and International Astronomical Union Colloquium (European Space Agency, 2002). 5. M. Born and E. Wolf, “Principles of optics: electromagnetic theory or propagation,” in Interference and Diffraction of Light (Cambridge U. Press, 2002). 6. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). 7. J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long-known effect,” J. Opt. Soc. Am. 59, 950–953 (1969). 8. R. W. Boyd, Nonlinear Optics (Elsevier, 2008). 9. R. L. Heredero,N. Uribe-Patarroyo, T. Belenguer, G. Ramos, A. Sanchez, M. Reina, V. Martinez Pillet, and A. Álvarez-Herrero, “Liquid-crystal variable retarders for aerospace polarimetry applications,” Appl. Opt. 46, 689–698 (2007). 10. “Validation of liquid crystal variable retarders for solar orbiter polarization modulation package,” European Space Agency, reference number 22334/09/NL/SFe. Consortium formed by the Centre Spatial de Liège, the Instituto de Astrofísica de Canarias, the Instituto de Astrofísica de Andalucía, the Istituto Nazionale di Astrofisica, and Arcoptix. Visual display led by the Instituto Nacional de Técnica Aeroespacial. 11. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystalbased passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004). 12. K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 34, 349–393 (2005). 13. C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992). 14. J. Millerd, N. Brock, J. Hayes, B. Kimbrough, M. Novak, M. North-Morris, and J. Wyant, “Modern approaches in phase measuring metrology,” Proc. SPIE 5856, 14–22 (2005). 15. J. C.Wyant, “Dynamic interferometry,” Opt. Photon. News 14, 36–41 (2003). 16. N. Brock, J. Hayes, B. Kimbrough, J. Millerd, M. North-Morris, M. Novak, and J. Wyant, “Dynamic interferometry,” Proc. SPIE5875, 101–110 (2005). 17. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,” Opt. Lett. 29, 1671–1673 (2004). 18. L. Z. Cai, Q. Liu, and X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28, 1808–1810 (2003). 19. Y. Zhisheng, L. Jifang, H. Zhengquan, and L. Yulin, “Measurements of the thickness uniformity of liquid crystal layer,” Appl. Opt. 36, 9109–9110 (1997). 20. F. Mok, J. Diep, H. Liu, and D. Psaltis, “Real-time computergenerated hologram by means of a liquid-crystal television spatial light modulator,” Opt. Lett. 11, 748–750 (1986). 21. N. Demoli, U. Dahms, H. Gruber, and G. Wernicke, “Influence of flatness distortion on the output of a liquid-crystaltelevision-based joint transform correlator system,” Appl. Opt. 36, 8417–8426 (1997). 22. D. Casasent and S. F. Xia, “Phase correction of light modulators,” Opt. Lett. 11, 398–400 (1986). 23. Shyu-Mou Chen, Ru-Pin Pan, and Ci-Ling Pan, “Interferometric measurements of the thickness of nematic liquid crystal films with a free surface,” Appl. Opt. 28, 4969–4971 (1989).
dc.identifier.doi10.1364/AO.49.000568
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.49.000568
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43971
dc.issue.number4
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final574
dc.page.initial568
dc.publisherThe Optical Society Of America
dc.relation.projectID22334/09/NL/SFe
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordInterferometry
dc.subject.keywordPolarimeter
dc.subject.keywordModulators
dc.subject.keywordExtraction
dc.subject.keywordSystem
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleOptical inspection of liquid crystal variable retarder inhomogeneities
dc.typejournal article
dc.volume.number49
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication6ccb1e60-8b61-4b23-8a0a-09af30f7b795
relation.isAuthorOfPublicatione77a30e7-98fe-421b-8010-077246ffcbdf
relation.isAuthorOfPublication5a8cfd67-3d9a-48ad-8819-2e3b9e7da48d
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA25.pdf
Size:
893.6 KB
Format:
Adobe Portable Document Format
Collections