Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Localizing estimates of the support of solutions of some nonlinear Schrodinger equations - The stationary case

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorBegout, Pascal
dc.date.accessioned2023-06-20T00:10:47Z
dc.date.available2023-06-20T00:10:47Z
dc.date.issued2012-01
dc.description.abstractThe main goal of this paper is to study the nature of the support of the solution of suitable nonlinear Schrodinger equations, mainly the compactness of the support and its spatial localization. This question touches the very foundations underlying the derivation of the Schrodinger equation, since it is well-known a solution of a linear Schrodinger equation perturbed by a regular potential never vanishes on a set of positive measure. A fact, which reflects the impossibility of locating the particle. Here we shall prove that if the perturbation involves suitable singular nonlinear terms then the support of the solution is a compact set, and so any estimate on its spatial localization implies very rich information on places not accessible by the particle. Our results are obtained by the application of certain energy methods which connect the compactness of the support with the local vanishing of a suitable "energy function" which satisfies a nonlinear differential inequality with an exponent less than one. The results improve and extend a previous short presentation by the authors published in 2006.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipDGISPI (Spain)
dc.description.sponsorshipEuropean program Nonlinear partial differential equations describing front propagation and other singular phenomena.
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15006
dc.identifier.doi10.1016/j.anihpc.2011.09.001
dc.identifier.issn0294-1449
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0294144911000837
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42139
dc.issue.number1
dc.journal.titleAnnales de l'Institut Henri Poincare (C) Non Linear Analysis
dc.language.isoeng
dc.page.final38
dc.page.initial35
dc.publisherElsevier (Gauthier-Villars),
dc.relation.projectIDFIRST (238702)
dc.relation.projectIDMTM200806208
dc.relation.projectIDHPRN-CT-2002-00274
dc.relation.projectIDResearch Group MOMAT (Ref. 910480)
dc.rights.accessRightsopen access
dc.subject.cdu517.928
dc.subject.keywordsingular complex potentials
dc.subject.keywordoperators
dc.subject.keywordNonlinear Schrodinger equation
dc.subject.keywordCompact support
dc.subject.keywordEnergy method
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleLocalizing estimates of the support of solutions of some nonlinear Schrodinger equations - The stationary case
dc.typejournal article
dc.volume.number29
dcterms.references[1]S.N. Antontsev, J.I. Díaz, S. Shmarev. Energy methods for free boundary problems. Applications to Nonlinear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and Their Applications, vol. 48, Birkhäuser Boston Inc., Boston, MA (2002) [2]P. Bégout, J.I. Díaz, Localizingestimates of the support of solutions of some nonlinearSchrödingerequations – the evolution case, in preparation. [3]P. Bégout, J.I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations, in preparation. [4]P. Bégout, J.I. Díaz. On a nonlinearSchrödingerequation with a localizing effect. C. R. Math. Acad. Sci. Paris, 342 (7) (2006), pp. 459–463 [5]P. Bégout, V. Torri. Numerical computations of the support of solutions of some localizing stationary nonlinear Schrödinger equations, in preparation. [6]J.A. Belmonte-Beitia. Varias cuestiones sobre la ecuación de Schrödinger no lineal con coeficientes dependientes del espacio. Bol. Soc. Esp. Mat. Apl. SMA, 52 (2010), pp. 97–128 [7]H. Brezis, T. Kato. Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9), 58 (2) (1979), pp. 137–151 [8]R. Carles, C. Gallo. Finite time extinction by nonlinear damping for the Schrödingerequation. Comm. Partial Differential Equations, 36 (6) (2011), pp. 961–975 [9]T. Cazenave. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10New York University Courant Institute of Mathematical Sciences, New York (2003) [10]T. Cazenave. An Introduction to Semilinear Elliptic Equations. Editora do Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro (2006) [11]J.I. Díaz. Nonlinear Partial Differential Equations and Free Boundaries, vol. I, Elliptic Equations. Research Notes in Mathematics, vol. 106Pitman (Advanced Publishing Program), Boston, MA (1985) [12]J.I. Díaz, L. Véron. Local vanishing properties of solutions of elliptic and parabolic quasilinear equations. Trans. Amer. Math. Soc., 290 (2) (1985), pp. 787–814 [13]I. Ekeland, R. Temam. Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1999) (English edition, translated from the French) [14]D. Gilbarg, N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in MathematicsSpringer-Verlag, Berlin (2001) (Reprint of the 1998 edition) [15]P. Grisvard. Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24Pitman (Advanced Publishing Program), Boston, MA (1985) [16]L. Hörmander. Definitions of maximal differential operators. Ark. Mat., 3 (1958), pp. 501–504 [17]A. Jensen. Propagation estimates for Schrödinger-type operators. Trans. Amer. Math. Soc., 291 (1) (1985), pp. 129–144 [18]E. Kashdan, P. Rosenau. Compactification of nonlinear patterns and waves. Phys. Rev. Lett., 101 (26) (2008), p. 2616024 [19]B.J. LeMesurier. Dissipation at singularities of the nonlinearSchrödingerequation through limits of regularisations. Phys. D, 138 (3–4) (2000), pp. 334–343 [20]J.-L. Lions, E. Magenes. Problèmes aux limites non homogènes, II. Ann. Inst. Fourier (Grenoble), 11 (1961), pp. 137–178 [21]J.-L. Lions, E. Magenes. Problemi ai limiti non omogenei, III. Ann. Sc. Norm. Super. Pisa (3), 15 (1961), pp. 41–103 [22]V. Liskevich, P. Stollmann. Schrödinger operators with singular complex potentials as generators: existence and stability. Semigroup Forum, 60 (3) (2000), pp. 337–343 [23]P. Rosenau, S. Schochet. Compact and almost compact breathers: a bridge between an anharmonic lattice and its continuum limit. Chaos, 15 (1) (2005), p. 015111 18 [24]W.A. Strauss. Partial Differential Equations. An Introduction. John Wiley & Sons Inc., New York (1992) [25]C. Sulem, P.-L. Sulem.The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139Springer-Verlag, New York (1999)
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format

Collections