Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Choquet Fuzzy Integral Applied to Stereovision Matching for Fish-Eye Lenses in Forest Analysis

dc.book.titleAdvances in computational Intelligence
dc.contributor.authorHerrera Caro, Pedro Javier
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.contributor.authorGuijarro Mata-García, María
dc.contributor.authorRuz Ortiz, José Jaime
dc.contributor.authorCruz García, Jesús Manuel de la
dc.date.accessioned2023-06-20T13:39:54Z
dc.date.available2023-06-20T13:39:54Z
dc.date.issued2009
dc.description© Springer-Verlag Berlin Heidelberg 2009. The authors wish to acknowledge to the Council of Education of the Autonomous Community of Madrid and the Social European Fund for the research contract with the first author. Also to Dra. Isabel Cañellas and Fernando Montes from the Forest Research Centre (CIFOR, INIA) for his support and the material supplied. International Workshop on Advanced Computational Intelligence (2º. oct 08-09, 2009. Mexico)
dc.description.abstractThis paper describes a novel stereovision matching approach based on omni-directional images obtained with fish-eye lenses in forest environments. The goal is to obtain a disparity map as a previous step for determining the volume of wood in the imaged area. The interest is focused on the trunks of the trees, due to the irregular distribution of the trunks; the most suitable features are the pixels. A set of six attributes is used for establishing the matching between the pixels in both images of the stereo pair. The final decision about the matched pixel is taken based on the Choquet Fuzzy Integral paradigm, which is a technique well tested for combining classifiers. The use and adjusting of this decision approach to our specific stereo vision matching problem makes the main finding of the paper. The procedure is based on the application of three well known matching constraints. The proposed approach is compared favourably against the usage of simple features and other fuzzy strategy that combines the simple ones.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCouncil of Education of the Autonomous Community of Madrid
dc.description.sponsorshipSocial European Fund
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23050
dc.identifier.isbn978-3-642-03155-7
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007/978-3-642-03156-4_18
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53287
dc.issue.number61
dc.language.isoeng
dc.page.final187
dc.page.initial179
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofseriesAdvances in Intelligent and Soft Computing
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordChoquet Fuzzy Integral
dc.subject.keywordFish-Eye Stereo Vision
dc.subject.keywordStereovision Matching
dc.subject.keywordOmni-Directional Forest Images
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleChoquet Fuzzy Integral Applied to Stereovision Matching for Fish-Eye Lenses in Forest Analysis
dc.typebook part
dcterms.references1. Barnard, S., Fishler, M.: Computational Stereo. ACM Computing Surveys 14, 553–572(1982) 2. Cochran, S.D., Medioni, G.: 3-D Surface Description from binocular stereo. IEEE Trans. Pattern Anal. Machine Intell. 14(10), 981–994 (1992) 3. Tang, L., Wu, C., Chen, Z.: Image dense matching based on region growth with adaptive window. Pattern Recognit. Letters 23, 1169–1178 (2002) 4. Lew, M.S., Huang, T.S., Wong, K.: Learning and feature selection in stereo matching. IEEE Trans. Pattern Anal. Machine Intell. 16, 869–881 (1994) 5. Abraham, S., Förstner, W.: Fish-eye-stero calibration and epipolar rectification. Photogrammetry and Remote Sensing 59, 278–288 (2005) 6. Schwalbe, E.: Geometric Modelling and Calibration of Fisheye Lens Camera Systems. In: Proc. 2nd Panoramic Photogrammetry Workshop, Int. Archives of Photogrammetry and Remote Sensing, vol. 36, Part 5/W8 (2005) 7. Barnea, D.I., Silverman, H.F.: A Class of Algorithms for Fast Digital Image Registration. IEEE Trans. Computers 21, 179–186 (1972) 8. Pajares, G., de la Cruz, J.M.: Visión por Computador: Imágenes digitales y aplicaciones, RA-MA (2008) 9. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Chichester (2004) 10. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. System Man and Cybernetics 18(1) (1988)
dspace.entity.typePublication
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublicationd5518066-7ea8-448c-8e86-42673e11a8ee
relation.isAuthorOfPublication59baddaa-b4d2-4f26-81a9-745602eb2b25
relation.isAuthorOfPublication.latestForDiscoveryd5518066-7ea8-448c-8e86-42673e11a8ee

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cruzgarcia15.pdf
Size:
316.43 KB
Format:
Adobe Portable Document Format