One-sided differentiability: a challenge for computer algebra systems
dc.contributor.author | Ferres-López, Enrique | |
dc.contributor.author | Roanes Lozano, Eugenio | |
dc.contributor.author | Martínez Zarzuelo, Angélica | |
dc.contributor.author | Sánchez, Fernando | |
dc.date.accessioned | 2024-12-13T08:40:34Z | |
dc.date.available | 2024-12-13T08:40:34Z | |
dc.date.issued | 2023-02-06 | |
dc.description | This work was partially supported by the research projects PGC2018-096509-B-I00 and PID2021-122905NB-C21 (Government of Spain). Referencias bibliográficas: • E. Ferres-López, E. Roanes-Lozano, Una breve nota didáctica sobre la evaluación de funciones fuera de su dominio usando software matemático, Boletín de la Sociedad Puig Adam, 113 (2022), 71–80. 2. • E. Ferres-López, E. Roanes-Lozano, A. Martínez-Zarzuelo, Limit calculation outside the domain of definition of real functions using computer algebra systems: an educational panoramic view, in Proceedings of the 27th Asian Technology Conference in Mathematics, (2022), 372–382. Available from: https://atcm.mathandtech.org/EP2022/regular/21979.pdf. • PlanetMath, One-sided derivatives, 2013. Available from: https://planetmath.org/onesidedderivatives • B. Rubio, Funciones de Variable Real, Madrid, España, 2006. • K. R. Stromberg, An Introduction to Classical Real Analysis, AMS Clesea Publishing, Providence, RI, USA, 1981. • F. Sánchez, Apuntes de Cálculo I, (n.a.). Available from: http://matematicas.unex.es/fsanchez/calculoI/. • R. J. Iraundegui, Descartes 2D—Existencia de la Derivada, (n.a.). Available from: http://recursostic.educacion.es/descartes/web/materiales_didacticos/Derivadas_y_derivadas_laterales/derivadas3.htm. • J. A. Méndez Contreras, Utilización de Maple como apoyo a la matemática en el Bachillerato, Federación Española de Sociedades de Profesores de Matemáticas (FESPM), Colección Cuadernos para el aula. Badajoz, Spain, 2002. • E. Ferres-López, E. R. Lozano, A. M. Zarzuelo, Approach to the one-sided differentiability concept with a computer algebra system from the point of view of mathematics education, in CADGME Conference—Digital Tools in Mathematics Education, Abstracts, (2022), 30–31. Available from: https://drive.google.com/file/d/1qF4ceMg6gNklOPa1JVkgKND1dOqNmyka/view. • Wikipedia, List of computer algebra systems, 2022. Available from: https://en.wikipedia.org/wiki/List_of_computer_algebra_systems. • L. Bernardin, P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K. M. Heal, et al., Maple Programming Guide, Maplesoft, Waterloo Maple Inc. Waterloo, Canada, 2020. Available from: https://www.maplesoft.com/documentation_center/Maple2021/ProgrammingGuide.pdf. • R. M. Corless, Essential Maple—An Introduction for Scientific Programmers, Springer, New York, NY, USA, 1995. https://doi.org/10.1007/978-1-4757-3985-5 • Maplesoft, Maple User Manual, Maplesoft, Waterloo Maple Inc. Waterloo, ON, Canada, 2022. Available from: https://www.maplesoft.com/documentation_center/maple2022/UserManual.pdf. • E. Roanes-Macías, E. Roanes-Lozano, Cálculos Matemáticos por Ordenador con Maple V.5., Editorial Rubiños-1890, Madrid, España, 1999. • J. R. Sendra, S. Pérez-Díaz, J. Sendra, C. Villarino, Introducción a la Computación Simbólica y Facilidades Maple, Ra-Ma, Madrid, España, 2012. • Maplesoft, Maple Product History, (n.a.). Available from: https://www.maplesoft.com/products/maple/history/. • Maplesoft, Geometry Homework Help: Use Maple 10 to help with your geometry homework and assignments, (n.a.). Available from: https://www.maplesoft.com/maple10/maple10_studentsgeometry.aspx. • B. Kutzler, V. Kokol-Voljc, Introduction to Derive 6, Kutzler & Kokol-Voljc OEG, Austria, 2003. • E. Roanes-Lozano, J. L. Galán-García, C. Solano-Macías, Some reflections about the success and impact of the computer algebra system Derive with a 10-year time perspective, Math. Comput. Sci., 13 (2019), 417–431. https://doi.org/10.1007/s11786-019-00404-9 • Maxima—A Computer Algebra System, 2022. Available from: https://maxima.sourceforge.io/. • J. E. Villate, XMaxima Manual, 2006. Available from: https://maxima.sourceforge.io/docs/xmaxima/xmaxima.pdf. • Wolfram Alpha, (n.a.). Available from: https://www.wolframalpha.com/. • J. B. Cassel, Wolfram|Alpha: a computational knowledge “Search” engine, in Google It (ed. N. Lee), (2016), 267–299. https://doi.org/10.1007/978-1-4939-6415-4_11 • Wolfram Mathematica—Comparative Analysis, Computer Algebra Systems. Available from: https://www.wolfram.com/mathematica/analysis/content/ComputerAlgebraSystems.html. • J. A. Moraño-Fernández, L. M. Sánchez-Ruiz, Cálculo y Álgebra con Mathematica 10, Universitat Politècnica de València, Valencia, España, 2015. • Wolfram Language & System—Documentation Center. Available from: https://reference.wolfram.com/language/?source=nav. • Wolfram Mathematica—Fast introduction for math students, (n.a.). Available from: https://www.wolfram.com/language/fast-introduction-for-math-students/es/?source=footer. • Sage, Documentation, (n.a.). Available from: SageMath Documentation. https://doc.sagemath.org/. • The Sage Development Team, Sage Reference Manual, 2022. Available from: https://doc.sagemath.org/html/en/reference/index.html. • SymPy Documentation Release 1.10.1., 2022. Available from: https://github.com/sympy/sympy/releases. • GeoGebra Classic Manual, (n.a.). Available from: https://wiki.geogebra.org/en/Libro. • H. Kronk, Despite clearing 100 million users, GeoGebra remains true to its founder’s vision, 2018. Available from: https://news.elearninginside.com/despite-clearing-100-million-usersgeogebra-remains-true-to-its-founders-vision/. • REDUCE, What is REDUCE, (n.a.). Available from: https://reduce-algebra.sourceforge.io/. • G. Rayna, REDUCE—Software for Algebraic Computation, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4612-4806-4 • M. McCallum, F. Wright, Algebraic Computing with REDUCE, Oxford University Pres, Oxford, UK, 1991. • Axiom, The Scientific Computation System, 2015. Available from: bhttp://www.axiomdeveloper.org/. • XCAS Documentation, (n.a.). Available from: https://xcas.univ-grenoblealpes.fr/documentation/EN.html. • D. R. Stoutemyer, Crimes and misdemeanors in the computer algebra trade, Not. Am. Math. Soc., 38 (1991), 778–785. Available from: https://www.ams.org/journals/notices/199109/199109FullIssue.pdf. • J. H. Davenport, The challenges of multivalued “Functions”, in Intelligent Computer Mathematics, (2010), 1–12. https://doi.org/10.1007/978-3-642-14128-7_1 • R. M. Corless, D. J. Jeffrey, S. M. Watt, J. H. Davenport, “According to Abramowitz and Stegun” or arccoth needn’t be uncouth, ACM SIGSAM Bull., 34 (2000), 58–65. https://doi.org/10.1145/362001.362023 • M. England, R. Bradford, J. H. Davenport, D. Wilson, Understanding branch cuts of expressions, in International Conference on Intelligent Computer Mathematics, (2013), 136–151. https://doi.org/10.1007/978-3-642-39320-4_9 • M. England, E. Cheb-Terrab, R. Bradford, J. H. Davenport, D. Wilson, Branch cuts in maple 17, ACM Commun. Comput. Algebra, 48 (2014), 24–27. https://doi.org/10.1145/2644288.2644293 • H. Aslaksen, Can Your Computer Do Complex Analysis? Comput. Algebra Syst. Pract. Guide, (1999), 246–258. • M. J. Wester, A Critique of the Mathematical Abilities of CA Systems, Comput. Algebra Syst. Pract. Guide, 16 (1999), 25–60. • L. Bernardin, A review of symbolic solvers, ACM SIGSAM Bull., 30 (1996), 9–20. https://doi.org/10.1145/231191.231193 • J. Monaghan, S. Sun, D. Tall, Construction of the limit concept with a computer algebra system, in Proceedings of the 18th Conference of the International Group for the Psychology of Mathematics Education, (1994), 279–286. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=332da54b21d4ac7877121501 f8ce0cae6fe6a343. • Mathematica Stack Exchange, What does True mean in this case? 2007. Available from: https://mathematica.stackexchange.com/questions/155021/what-does-true-mean-in-this-case. | |
dc.description.abstract | Computer Algebra Systems (CASs) are extremely powerful and widely used digital tools. Focusing on differentiation, CASs include a command that computes the derivative of functions in one variable (and also the partial derivative of functions in several variables). We will focus in this article on real-valued functions of one real variable. Since CASs usually compute the derivative of real-valued functions as a whole, the value of the computed derivative at points where the left deriva-tive and the right derivative are different (that we will call conflicting points) should be something like “undefined”, although this isn’t always the case: the output could strongly differ depending on the chosen CAS. We have analysed and compared in this article how some well-known CASs behave when addressing differentiation at the conflicting points of five different functions chosen by the au-thors. Finally, the ability for calculating one-sided limits of CASs allows to directly compute the result in these cumbersome cases using the formal definition of one-sided derivative, which we have also analysed and compared for the selected CASs. Regarding teaching, this is an important issue, as it is a topic of Secondary Education and nowadays the use of CASs as an auxiliary digital tool for teaching mathematics is very common. | |
dc.description.department | Depto. de Didáctica de las Ciencias Experimentales , Sociales y Matemáticas | |
dc.description.faculty | Fac. de Educación | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Government of Spain | |
dc.description.status | pub | |
dc.identifier.citation | E. Ferres-López, E. Roanes-Lozano, A. Martínez-Zarzuelo, F. Sánchez. One-sided differentiability: a challenge for computer algebra systems. Electronic Research Archive. 2023, 31(3), 1737-1768. https://doi.org/10.3934/era.2023090 | |
dc.identifier.doi | 10.3934/era.2023090 | |
dc.identifier.issn | 2688-1594 | |
dc.identifier.officialurl | https://doi.org/10.3934/era.2023090 | |
dc.identifier.relatedurl | https://www-scopus-com.bucm.idm.oclc.org/record/display.uri?eid=2-s2.0-85164589340&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28One-sided+differentiability%3A+a+challenge+for+computer+algebra+systems%29&sessionSearchId=0c5dcd17039c6481a084cc38bee123cf&relpos=0 | |
dc.identifier.relatedurl | https://www.aimspress.com/journal/era | |
dc.identifier.relatedurl | https://www.aimspress.com/article/doi/10.3934/era.2023090 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/112579 | |
dc.issue.number | 3 | |
dc.journal.title | Electronic Research Archive | |
dc.language.iso | eng | |
dc.page.final | 1768 | |
dc.page.initial | 1737 | |
dc.publisher | American Mathematical Society | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096509-B-I00/ES/GESTION INTELIGENTE DE INFORMACION BORROSA/ | |
dc.relation.projectID | PID2021-122905NB-C21 | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject.cdu | 372.85 | |
dc.subject.cdu | 37.02:51 | |
dc.subject.cdu | 004:37 | |
dc.subject.cdu | 373.5 | |
dc.subject.cdu | 004.4 | |
dc.subject.keyword | Computer algebra systems | |
dc.subject.keyword | One-sided differentiability | |
dc.subject.keyword | Real-valued functions of one real variable | |
dc.subject.keyword | Limits | |
dc.subject.keyword | Software comparison | |
dc.subject.ucm | Enseñanza de las Matemáticas | |
dc.subject.ucm | Enseñanza secundaria | |
dc.subject.ucm | Software | |
dc.subject.unesco | 5801 Teoría y Métodos Educativos | |
dc.subject.unesco | 5802.03 Desarrollo de Asignaturas | |
dc.subject.unesco | 1203.10 Enseñanza Con Ayuda de Ordenador | |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | |
dc.title | One-sided differentiability: a challenge for computer algebra systems | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 31 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 87cdc290-c1b6-4f14-aafc-e52deb67ecf9 | |
relation.isAuthorOfPublication | f00463ec-91c1-425c-b3d5-cd30465062d7 | |
relation.isAuthorOfPublication.latestForDiscovery | 87cdc290-c1b6-4f14-aafc-e52deb67ecf9 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- One-sided differentiability.pdf
- Size:
- 731.86 KB
- Format:
- Adobe Portable Document Format