Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

One-sided differentiability: a challenge for computer algebra systems

dc.contributor.authorFerres-López, Enrique
dc.contributor.authorRoanes Lozano, Eugenio
dc.contributor.authorMartínez Zarzuelo, Angélica
dc.contributor.authorSánchez, Fernando
dc.date.accessioned2024-12-13T08:40:34Z
dc.date.available2024-12-13T08:40:34Z
dc.date.issued2023-02-06
dc.descriptionThis work was partially supported by the research projects PGC2018-096509-B-I00 and PID2021-122905NB-C21 (Government of Spain). Referencias bibliográficas: • E. Ferres-López, E. Roanes-Lozano, Una breve nota didáctica sobre la evaluación de funciones fuera de su dominio usando software matemático, Boletín de la Sociedad Puig Adam, 113 (2022), 71–80. 2. • E. Ferres-López, E. Roanes-Lozano, A. Martínez-Zarzuelo, Limit calculation outside the domain of definition of real functions using computer algebra systems: an educational panoramic view, in Proceedings of the 27th Asian Technology Conference in Mathematics, (2022), 372–382. Available from: https://atcm.mathandtech.org/EP2022/regular/21979.pdf. • PlanetMath, One-sided derivatives, 2013. Available from: https://planetmath.org/onesidedderivatives • B. Rubio, Funciones de Variable Real, Madrid, España, 2006. • K. R. Stromberg, An Introduction to Classical Real Analysis, AMS Clesea Publishing, Providence, RI, USA, 1981. • F. Sánchez, Apuntes de Cálculo I, (n.a.). Available from: http://matematicas.unex.es/fsanchez/calculoI/. • R. J. Iraundegui, Descartes 2D—Existencia de la Derivada, (n.a.). Available from: http://recursostic.educacion.es/descartes/web/materiales_didacticos/Derivadas_y_derivadas_laterales/derivadas3.htm. • J. A. Méndez Contreras, Utilización de Maple como apoyo a la matemática en el Bachillerato, Federación Española de Sociedades de Profesores de Matemáticas (FESPM), Colección Cuadernos para el aula. Badajoz, Spain, 2002. • E. Ferres-López, E. R. Lozano, A. M. Zarzuelo, Approach to the one-sided differentiability concept with a computer algebra system from the point of view of mathematics education, in CADGME Conference—Digital Tools in Mathematics Education, Abstracts, (2022), 30–31. Available from: https://drive.google.com/file/d/1qF4ceMg6gNklOPa1JVkgKND1dOqNmyka/view. • Wikipedia, List of computer algebra systems, 2022. Available from: https://en.wikipedia.org/wiki/List_of_computer_algebra_systems. • L. Bernardin, P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K. M. Heal, et al., Maple Programming Guide, Maplesoft, Waterloo Maple Inc. Waterloo, Canada, 2020. Available from: https://www.maplesoft.com/documentation_center/Maple2021/ProgrammingGuide.pdf. • R. M. Corless, Essential Maple—An Introduction for Scientific Programmers, Springer, New York, NY, USA, 1995. https://doi.org/10.1007/978-1-4757-3985-5 • Maplesoft, Maple User Manual, Maplesoft, Waterloo Maple Inc. Waterloo, ON, Canada, 2022. Available from: https://www.maplesoft.com/documentation_center/maple2022/UserManual.pdf. • E. Roanes-Macías, E. Roanes-Lozano, Cálculos Matemáticos por Ordenador con Maple V.5., Editorial Rubiños-1890, Madrid, España, 1999. • J. R. Sendra, S. Pérez-Díaz, J. Sendra, C. Villarino, Introducción a la Computación Simbólica y Facilidades Maple, Ra-Ma, Madrid, España, 2012. • Maplesoft, Maple Product History, (n.a.). Available from: https://www.maplesoft.com/products/maple/history/. • Maplesoft, Geometry Homework Help: Use Maple 10 to help with your geometry homework and assignments, (n.a.). Available from: https://www.maplesoft.com/maple10/maple10_studentsgeometry.aspx. • B. Kutzler, V. Kokol-Voljc, Introduction to Derive 6, Kutzler & Kokol-Voljc OEG, Austria, 2003. • E. Roanes-Lozano, J. L. Galán-García, C. Solano-Macías, Some reflections about the success and impact of the computer algebra system Derive with a 10-year time perspective, Math. Comput. Sci., 13 (2019), 417–431. https://doi.org/10.1007/s11786-019-00404-9 • Maxima—A Computer Algebra System, 2022. Available from: https://maxima.sourceforge.io/. • J. E. Villate, XMaxima Manual, 2006. Available from: https://maxima.sourceforge.io/docs/xmaxima/xmaxima.pdf. • Wolfram Alpha, (n.a.). Available from: https://www.wolframalpha.com/. • J. B. Cassel, Wolfram|Alpha: a computational knowledge “Search” engine, in Google It (ed. N. Lee), (2016), 267–299. https://doi.org/10.1007/978-1-4939-6415-4_11 • Wolfram Mathematica—Comparative Analysis, Computer Algebra Systems. Available from: https://www.wolfram.com/mathematica/analysis/content/ComputerAlgebraSystems.html. • J. A. Moraño-Fernández, L. M. Sánchez-Ruiz, Cálculo y Álgebra con Mathematica 10, Universitat Politècnica de València, Valencia, España, 2015. • Wolfram Language & System—Documentation Center. Available from: https://reference.wolfram.com/language/?source=nav. • Wolfram Mathematica—Fast introduction for math students, (n.a.). Available from: https://www.wolfram.com/language/fast-introduction-for-math-students/es/?source=footer. • Sage, Documentation, (n.a.). Available from: SageMath Documentation. https://doc.sagemath.org/. • The Sage Development Team, Sage Reference Manual, 2022. Available from: https://doc.sagemath.org/html/en/reference/index.html. • SymPy Documentation Release 1.10.1., 2022. Available from: https://github.com/sympy/sympy/releases. • GeoGebra Classic Manual, (n.a.). Available from: https://wiki.geogebra.org/en/Libro. • H. Kronk, Despite clearing 100 million users, GeoGebra remains true to its founder’s vision, 2018. Available from: https://news.elearninginside.com/despite-clearing-100-million-usersgeogebra-remains-true-to-its-founders-vision/. • REDUCE, What is REDUCE, (n.a.). Available from: https://reduce-algebra.sourceforge.io/. • G. Rayna, REDUCE—Software for Algebraic Computation, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4612-4806-4 • M. McCallum, F. Wright, Algebraic Computing with REDUCE, Oxford University Pres, Oxford, UK, 1991. • Axiom, The Scientific Computation System, 2015. Available from: bhttp://www.axiomdeveloper.org/. • XCAS Documentation, (n.a.). Available from: https://xcas.univ-grenoblealpes.fr/documentation/EN.html. • D. R. Stoutemyer, Crimes and misdemeanors in the computer algebra trade, Not. Am. Math. Soc., 38 (1991), 778–785. Available from: https://www.ams.org/journals/notices/199109/199109FullIssue.pdf. • J. H. Davenport, The challenges of multivalued “Functions”, in Intelligent Computer Mathematics, (2010), 1–12. https://doi.org/10.1007/978-3-642-14128-7_1 • R. M. Corless, D. J. Jeffrey, S. M. Watt, J. H. Davenport, “According to Abramowitz and Stegun” or arccoth needn’t be uncouth, ACM SIGSAM Bull., 34 (2000), 58–65. https://doi.org/10.1145/362001.362023 • M. England, R. Bradford, J. H. Davenport, D. Wilson, Understanding branch cuts of expressions, in International Conference on Intelligent Computer Mathematics, (2013), 136–151. https://doi.org/10.1007/978-3-642-39320-4_9 • M. England, E. Cheb-Terrab, R. Bradford, J. H. Davenport, D. Wilson, Branch cuts in maple 17, ACM Commun. Comput. Algebra, 48 (2014), 24–27. https://doi.org/10.1145/2644288.2644293 • H. Aslaksen, Can Your Computer Do Complex Analysis? Comput. Algebra Syst. Pract. Guide, (1999), 246–258. • M. J. Wester, A Critique of the Mathematical Abilities of CA Systems, Comput. Algebra Syst. Pract. Guide, 16 (1999), 25–60. • L. Bernardin, A review of symbolic solvers, ACM SIGSAM Bull., 30 (1996), 9–20. https://doi.org/10.1145/231191.231193 • J. Monaghan, S. Sun, D. Tall, Construction of the limit concept with a computer algebra system, in Proceedings of the 18th Conference of the International Group for the Psychology of Mathematics Education, (1994), 279–286. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=332da54b21d4ac7877121501 f8ce0cae6fe6a343. • Mathematica Stack Exchange, What does True mean in this case? 2007. Available from: https://mathematica.stackexchange.com/questions/155021/what-does-true-mean-in-this-case.
dc.description.abstractComputer Algebra Systems (CASs) are extremely powerful and widely used digital tools. Focusing on differentiation, CASs include a command that computes the derivative of functions in one variable (and also the partial derivative of functions in several variables). We will focus in this article on real-valued functions of one real variable. Since CASs usually compute the derivative of real-valued functions as a whole, the value of the computed derivative at points where the left deriva-tive and the right derivative are different (that we will call conflicting points) should be something like “undefined”, although this isn’t always the case: the output could strongly differ depending on the chosen CAS. We have analysed and compared in this article how some well-known CASs behave when addressing differentiation at the conflicting points of five different functions chosen by the au-thors. Finally, the ability for calculating one-sided limits of CASs allows to directly compute the result in these cumbersome cases using the formal definition of one-sided derivative, which we have also analysed and compared for the selected CASs. Regarding teaching, this is an important issue, as it is a topic of Secondary Education and nowadays the use of CASs as an auxiliary digital tool for teaching mathematics is very common.
dc.description.departmentDepto. de Didáctica de las Ciencias Experimentales , Sociales y Matemáticas
dc.description.facultyFac. de Educación
dc.description.refereedTRUE
dc.description.sponsorshipGovernment of Spain
dc.description.statuspub
dc.identifier.citationE. Ferres-López, E. Roanes-Lozano, A. Martínez-Zarzuelo, F. Sánchez. One-sided differentiability: a challenge for computer algebra systems. Electronic Research Archive. 2023, 31(3), 1737-1768. https://doi.org/10.3934/era.2023090
dc.identifier.doi10.3934/era.2023090
dc.identifier.issn2688-1594
dc.identifier.officialurlhttps://doi.org/10.3934/era.2023090
dc.identifier.relatedurlhttps://www-scopus-com.bucm.idm.oclc.org/record/display.uri?eid=2-s2.0-85164589340&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28One-sided+differentiability%3A+a+challenge+for+computer+algebra+systems%29&sessionSearchId=0c5dcd17039c6481a084cc38bee123cf&relpos=0
dc.identifier.relatedurlhttps://www.aimspress.com/journal/era
dc.identifier.relatedurlhttps://www.aimspress.com/article/doi/10.3934/era.2023090
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112579
dc.issue.number3
dc.journal.titleElectronic Research Archive
dc.language.isoeng
dc.page.final1768
dc.page.initial1737
dc.publisherAmerican Mathematical Society
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096509-B-I00/ES/GESTION INTELIGENTE DE INFORMACION BORROSA/
dc.relation.projectIDPID2021-122905NB-C21
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.cdu372.85
dc.subject.cdu37.02:51
dc.subject.cdu004:37
dc.subject.cdu373.5
dc.subject.cdu004.4
dc.subject.keywordComputer algebra systems
dc.subject.keywordOne-sided differentiability
dc.subject.keywordReal-valued functions of one real variable
dc.subject.keywordLimits
dc.subject.keywordSoftware comparison
dc.subject.ucmEnseñanza de las Matemáticas
dc.subject.ucmEnseñanza secundaria
dc.subject.ucmSoftware
dc.subject.unesco5801 Teoría y Métodos Educativos
dc.subject.unesco5802.03 Desarrollo de Asignaturas
dc.subject.unesco1203.10 Enseñanza Con Ayuda de Ordenador
dc.subject.unesco1203 Ciencia de Los Ordenadores
dc.titleOne-sided differentiability: a challenge for computer algebra systems
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number31
dspace.entity.typePublication
relation.isAuthorOfPublication87cdc290-c1b6-4f14-aafc-e52deb67ecf9
relation.isAuthorOfPublicationf00463ec-91c1-425c-b3d5-cd30465062d7
relation.isAuthorOfPublication.latestForDiscovery87cdc290-c1b6-4f14-aafc-e52deb67ecf9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
One-sided differentiability.pdf
Size:
731.86 KB
Format:
Adobe Portable Document Format

Collections