Unfolding of differential energy spectra in the MAGIC experiment

dc.contributor.authorAntoranz Canales, Pedro
dc.contributor.authorBarrio Uña, Juan Abel
dc.contributor.authorContreras González, José Luis
dc.contributor.authorFonseca González, Mª Victoria
dc.contributor.authorLópez Moya, Marcos
dc.contributor.authorMiranda Pantoja, José Miguel
dc.contributor.authorNieto, Daniel
dc.date.accessioned2023-06-20T10:38:52Z
dc.date.available2023-06-20T10:38:52Z
dc.date.issued2007-12-21
dc.description© Elsevier BV. We thank Michael Schmelling for fruitful discussions and critical comments.
dc.description.abstractThe paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses. (c) 2007 Elsevier B.V. All rights reserved.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23657
dc.identifier.citation[1] C. Baixeras, et al., Nucl. Instr. and Meth. A 518 (2004) 188. [2] R. Gold, ANL-6984, 1964, unpublished. [3] G.I. Marchuk, Methods of Numerical Mathematics, Springer, Berlin, 1975. [4] A.N. Tikhonov, V.Ya. Arsenin, Methods of Solution of Ill-posed Problems, Nauka, Moscow, 1979. [5] S.W. Provencher, Comput. Phys. Commun. 27 (1982) 213, 229. [6] V. Blobel, Unfolding methods in high-energy physics experiments, DESY 84-118, 1984. [7] V. Blobel, 1984 CERN School of Computing, Ajguablava, Spain, CERN 85-09, 1984, p. 88. [8] E.A. Belogorlov, et al., Nucl. Instr. and Meth. A 235 (1985) 146. [9] S.F. Giljazov, Methods of Solution of Linear Ill-posed Problems, MSU, Moscow, 1987. [10] V.P. Zhigunov, et al., Nucl. Instr. and Meth. A 273 (1988) 362. [11] M. Bertero, Advances in Electronics and Electron Physics, vol. 75, Academic Press Inc., New York, 1989. [12] V.B. Anykeyev, et al., Nucl. Instr. and Meth. A 303 (1991) 350. [13] M. Schmelling, Nucl. Instr. and Meth. A 340 (1994) 400. [14] V. Blobel, The RUN manual, OPAL Technical Note TN361, 1996. [15] A. Höcker, V. Kartvelishvili, Nucl. Instr. and Meth. A 372 (1996) 469. [16] M. Schmelling, Numerische Methoden der Datenanalyse, MPI-K Heidelberg, 1998, hwww.mpihd.mpg.de/personalhomes/michaelt/public/1998-01i. [17] G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998. [18] G. Cowan, A survey of unfolding methods for particle physics, IPPP Workshop on Advanced Statistics Techniques in Particle Physics, Durham 2002, p. 248. [19] W.H. Press, et al., Numerical Recipes in Cþþ, second ed., Cambridge University Press, Cambridge, 2002. [20] V. Blobel, An Unfolding Method for High Energy Physics, IPPP Workshop on Advanced Statistics Techniques in Particle Physics, Durham, 2002. [21] W. Wittek, Correlations between parameters of extended air showers and their proper use in analyses, 26th International Cosmic Ray Conference, Salt Lake City, Utah, USA, 1999, astro-ph/9908029. [22] P. Majumdar, et al. (MAGIC Collab.), 2005, Proc. of the 29th ICRC, Pune, India, 5-203, astro-ph/0508274. [23] S. Mizobuchi, et al. (MAGIC Collab.), in: Proceedings of the 29th ICRC, Pune, India, 2005, p. 101, astro-ph/0508274. [24] T. Bretz, R. Wagner, (MAGIC Collab.), in: Proceedings of the 28th ICRC, Tsukuba, Japan, 2003, p. 2947. [25] T.M. Kneiske, et al., Astron. Astrophys. 413 (2004) 807. [26] J. Albert, et al., Astrophys. J. (2007), submitted for publication, arXiv:0705.3244. [27] R. Brun, F. Rademakers, hhttp://root.cern.ch/i.
dc.identifier.doi10.1016/j.nima.2007.09.048
dc.identifier.issn0168-9002
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.nima.2007.09.048
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/0707.2453
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50887
dc.issue.number2-3
dc.journal.titleNuclear instruments & methods in physics research. Section A, Accelerators spectrometers detectors and associated equipment
dc.language.isoeng
dc.page.final506
dc.page.initial494
dc.publisherElsevier Science BV
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.cdu539.1
dc.subject.keywordDistributions
dc.subject.keywordEntropy.
dc.subject.ucmElectrónica (Física)
dc.subject.ucmElectricidad
dc.subject.ucmFísica nuclear
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleUnfolding of differential energy spectra in the MAGIC experiment
dc.typejournal article
dc.volume.number583
dspace.entity.typePublication
relation.isAuthorOfPublication6bc87e5f-9b77-4982-b112-0d4f8aa128d0
relation.isAuthorOfPublication11e5fd8b-1a86-4f8d-85c6-135541232be4
relation.isAuthorOfPublication6a14529e-a65e-4709-9bc1-61f9429841c1
relation.isAuthorOfPublication8b5d96d7-bd11-4ee4-87d0-258a1e077e26
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication.latestForDiscovery6bc87e5f-9b77-4982-b112-0d4f8aa128d0
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MirandaJM64preprint.pdf
Size:
269.25 KB
Format:
Adobe Portable Document Format
Collections