Synthesis, pharmacological evaluation and docking studies of pyrrole structure-based CB 2 receptor antagonists
Loading...
Official URL
Full text at PDC
Publication date
2015
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Ragusa G, Gómez-Cañas M, Morales P, Hurst DP, Deligia F, Pazos R, Pinna GA, Fernández-Ruiz J, Goya P, Reggio PH, Jagerovic N, García-Arencibia M, Murineddu G. Synthesis, pharmacological evaluation and docking studies of pyrrole structure-based CB2 receptor antagonists. Eur J Med Chem. 2015 Aug 28;101:651-67. doi: 10.1016/j.ejmech.2015.06.057
Abstract
During the last years, there has been a continuous interest in the development of cannabinoid receptor ligands that may serve as therapeutic agents and/or as experimental tools. This prompted us to design and synthesize analogues of the CB2 receptor antagonist N-fenchyl-5-(4-chloro-3-methyl-phenyl)-1-(4- methyl-benzyl)-1H-pyrazole-3-carboxamide (SR144528). The structural modifications involved the bioisosteric replacement of the pyrazole ring by a pyrrole ring and variations on the amine carbamoyl substituents. Two of these compounds, the fenchyl pyrrole analogue 6 and the myrtanyl derivative 10, showed high affinity (Ki in the low nM range) and selectivity for the CB2 receptor and both resulted to be antagonists/inverse agonists in [35S]-GTPgS binding analysis and in an in vitro CB2 receptor bioassay. Cannabinoid receptor binding data of the series allowed identifying steric constraints within the CB2 binding pocket using a study of Van der Waals' volume maps. Glide docking studies revealed that all docked compounds bind in the same region of the CB2 receptor inactive state model.