The real genus of the alternating groups
dc.contributor.author | Etayo Gordejuela, José Javier | |
dc.contributor.author | Martínez García, Ernesto | |
dc.date.accessioned | 2023-06-20T09:36:50Z | |
dc.date.available | 2023-06-20T09:36:50Z | |
dc.date.issued | 2008 | |
dc.description.abstract | A Klein surface with boundary of algebraic genus $\mathfrak{p}\geq 2$, has at most $12(\mathfrak{p}-1)$ automorphisms. The groups attaining this upper bound are called $M^{\ast}$-groups, and the corresponding surfaces are said to have maximal symmetry. The $M^{\ast}$-groups are characterized by a partial presentation by generators and relators. The alternating groups $A_{n}$ were proved to be $M^{\ast}$-groups when $n\geq 168$ by M. Conder. In this work we prove that $A_{n}$ is an $M^{\ast }$-group if and only if $n\geq 13$ or $n=5,10$. In addition, we describe topologically the surfaces with maximal symmetry having $A_{n}$ as automorphism group, in terms of the partial presentation of the group. As an application we determine explicitly all such surfaces for $n\leq 14$. Each finite group $G$ acts as an automorphism group of several Klein surfaces. The minimal genus of these surfaces is called the real genus of the group, $\rho(G)$. If $G$ is an $M^{\ast}$-group then $\rho(G)=\frac{o(G)}{12}+1$. We end our work by calculating the real genus of the alternating groups which are not $M^{\ast}$-groups. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15813 | |
dc.identifier.issn | 0213-2230 | |
dc.identifier.officialurl | http://projecteuclid.org/euclid.rmi/1228834296 | |
dc.identifier.relatedurl | http://projecteuclid.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50034 | |
dc.issue.number | 3 | |
dc.journal.title | Revista Matemática Iberoamericana | |
dc.page.final | 894 | |
dc.page.initial | 865 | |
dc.publisher | Universidad Autónoma Madrid | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.54 | |
dc.subject.keyword | Alternating groups | |
dc.subject.keyword | Real genus | |
dc.subject.keyword | $M^{\ast}$-groups | |
dc.subject.keyword | Bordered Klein surfaces | |
dc.subject.ucm | Grupos (Matemáticas) | |
dc.title | The real genus of the alternating groups | en |
dc.type | journal article | |
dc.volume.number | 24 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2275e5ec-53a7-4e0f-82d6-517cdf4cd56c | |
relation.isAuthorOfPublication.latestForDiscovery | 2275e5ec-53a7-4e0f-82d6-517cdf4cd56c |