The real genus of the alternating groups

dc.contributor.authorEtayo Gordejuela, José Javier
dc.contributor.authorMartínez García, Ernesto
dc.date.accessioned2023-06-20T09:36:50Z
dc.date.available2023-06-20T09:36:50Z
dc.date.issued2008
dc.description.abstractA Klein surface with boundary of algebraic genus $\mathfrak{p}\geq 2$, has at most $12(\mathfrak{p}-1)$ automorphisms. The groups attaining this upper bound are called $M^{\ast}$-groups, and the corresponding surfaces are said to have maximal symmetry. The $M^{\ast}$-groups are characterized by a partial presentation by generators and relators. The alternating groups $A_{n}$ were proved to be $M^{\ast}$-groups when $n\geq 168$ by M. Conder. In this work we prove that $A_{n}$ is an $M^{\ast }$-group if and only if $n\geq 13$ or $n=5,10$. In addition, we describe topologically the surfaces with maximal symmetry having $A_{n}$ as automorphism group, in terms of the partial presentation of the group. As an application we determine explicitly all such surfaces for $n\leq 14$. Each finite group $G$ acts as an automorphism group of several Klein surfaces. The minimal genus of these surfaces is called the real genus of the group, $\rho(G)$. If $G$ is an $M^{\ast}$-group then $\rho(G)=\frac{o(G)}{12}+1$. We end our work by calculating the real genus of the alternating groups which are not $M^{\ast}$-groups.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15813
dc.identifier.issn0213-2230
dc.identifier.officialurlhttp://projecteuclid.org/euclid.rmi/1228834296
dc.identifier.relatedurlhttp://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50034
dc.issue.number3
dc.journal.titleRevista Matemática Iberoamericana
dc.page.final894
dc.page.initial865
dc.publisherUniversidad Autónoma Madrid
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.54
dc.subject.keywordAlternating groups
dc.subject.keywordReal genus
dc.subject.keyword$M^{\ast}$-groups
dc.subject.keywordBordered Klein surfaces
dc.subject.ucmGrupos (Matemáticas)
dc.titleThe real genus of the alternating groupsen
dc.typejournal article
dc.volume.number24
dspace.entity.typePublication
relation.isAuthorOfPublication2275e5ec-53a7-4e0f-82d6-517cdf4cd56c
relation.isAuthorOfPublication.latestForDiscovery2275e5ec-53a7-4e0f-82d6-517cdf4cd56c

Download

Collections