Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

The real genus of the alternating groups

dc.contributor.authorEtayo Gordejuela, José Javier
dc.contributor.authorMartínez García, Ernesto
dc.date.accessioned2023-06-20T09:36:50Z
dc.date.available2023-06-20T09:36:50Z
dc.date.issued2008
dc.description.abstractA Klein surface with boundary of algebraic genus $\mathfrak{p}\geq 2$, has at most $12(\mathfrak{p}-1)$ automorphisms. The groups attaining this upper bound are called $M^{\ast}$-groups, and the corresponding surfaces are said to have maximal symmetry. The $M^{\ast}$-groups are characterized by a partial presentation by generators and relators. The alternating groups $A_{n}$ were proved to be $M^{\ast}$-groups when $n\geq 168$ by M. Conder. In this work we prove that $A_{n}$ is an $M^{\ast }$-group if and only if $n\geq 13$ or $n=5,10$. In addition, we describe topologically the surfaces with maximal symmetry having $A_{n}$ as automorphism group, in terms of the partial presentation of the group. As an application we determine explicitly all such surfaces for $n\leq 14$. Each finite group $G$ acts as an automorphism group of several Klein surfaces. The minimal genus of these surfaces is called the real genus of the group, $\rho(G)$. If $G$ is an $M^{\ast}$-group then $\rho(G)=\frac{o(G)}{12}+1$. We end our work by calculating the real genus of the alternating groups which are not $M^{\ast}$-groups.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15813
dc.identifier.issn0213-2230
dc.identifier.officialurlhttp://projecteuclid.org/euclid.rmi/1228834296
dc.identifier.relatedurlhttp://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50034
dc.issue.number3
dc.journal.titleRevista Matemática Iberoamericana
dc.page.final894
dc.page.initial865
dc.publisherUniversidad Autónoma Madrid
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.54
dc.subject.keywordAlternating groups
dc.subject.keywordReal genus
dc.subject.keyword$M^{\ast}$-groups
dc.subject.keywordBordered Klein surfaces
dc.subject.ucmGrupos (Matemáticas)
dc.titleThe real genus of the alternating groupsen
dc.typejournal article
dc.volume.number24
dspace.entity.typePublication
relation.isAuthorOfPublication2275e5ec-53a7-4e0f-82d6-517cdf4cd56c
relation.isAuthorOfPublication.latestForDiscovery2275e5ec-53a7-4e0f-82d6-517cdf4cd56c

Download

Collections