Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Two infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism

dc.contributor.authorLlanes Estrada, Felipe José
dc.contributor.authorWilliams, Richard
dc.date.accessioned2023-06-20T03:33:56Z
dc.date.available2023-06-20T03:33:56Z
dc.date.issued2012-09-26
dc.description© 2012 American Physical Society. We wish to thank D. Zwanziger for his continued support and contributions to this work. We also thank R. Alkofer, C. Fischer and L. von Smekal for discussions and a critical reading of this manuscript. This work has been supported by Grants No. FPA2011-27853-01, No. FIS2008-01323 (Spain) and by the Austrian Science Fund FWF under Project No. M1333-N16.
dc.description.abstractThree decades of work on the quantum field equations of pure Yang-Mills theory have distilled two families of solutions in Landau gauge. Both coincide for hig (Euclidean) momentum with known perturbation theory, and both predict an infrared suppressed transverse gluon propagator, but whereas the solution known as scaling features an infrared power law for the gluon and ghost propagators, the massive solution rather describes the gluon as a vector boson that features a finite Debye screening mass. In this work we examine the gauge dependence of these solutions by adopting stochastic quantization. What we find, in four dimensions and in a rainbow approximation, is that stochastic quantization supports both solutions in Landau gauge but the scaling solution abruptly disappears when the parameter controlling the drift force is separated from zero (soft gauge-fixing), recovering only the perturbative propagators; the massive solution seems to survive the extension outside Landau gauge. These results are consistent with the scaling solution being related to the existence of a Gribov horizon, with the massive one being more general. We also examine the effective action in Faddeev-Popov quantization that generates the rainbow and we find, for a bare vertex approximation, that the massive-type solutions minimize the quantum effective action.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipAustrian Science Fund FWF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22058
dc.identifier.doi10.1103/PhysRevD.86.065034
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.86.065034
dc.identifier.relatedurlhttp://prd.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43890
dc.issue.number6
dc.journal.titlePhysicall Review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDM1333-N16
dc.relation.projectIDFPA2011-27853-01
dc.relation.projectIDFIS2008-01323
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordLandau Gauge
dc.subject.keywordField-Theory
dc.subject.keywordBehavior
dc.subject.keywordLattice
dc.subject.keywordGluon
dc.subject.keywordConfinement
dc.subject.keywordQcd
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleTwo infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism
dc.typejournal article
dc.volume.number86
dcterms.references[1] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 65, 025012 (2001). [2] L. von Smekal, A. Hauck, and R. Alkofer, Ann. Phys.(N.Y.) 267, 1 (1998); 269, 182(E) (1998). [3] L. von Smekal, R. Alkofer, and A. Hauck, Phys. Rev. Lett. 79, 3591 (1997). [4] J. E. Mandula and M. Ogilvie, Phys. Lett. B 185, 127 (1987). [5] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982). [6] D. Dudal, S. P. Sorella, N. Vandersickel, and H. Verschelde, Phys. Rev. D 77, 071501 (2008). [7] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and H. Verschelde, Phys. Rev. D 78, 065047 (2008). [8] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D 78, 025010 (2008). [9] P. Boucaud, J. P. Leroy, A. Le Yaouanc, J. Micheli, O.Pene, and J. Rodriguez-Quintero, J. High Energy Phys.06 (2008) 099. [10] A. C. Aguilar, D. Binosi, and J. Papavassiliou, J.High Energy Phys. 01 (2012) 050. [11] R. Alkofer, Proc. Sci., FACESQCD (2010) 030. [12] C. S. Fischer, A. Maas, and J. M. Pawlowski, Ann. Phys.(N.Y.) 324, 2408 (2009). [13] A. Maas, A. Cucchieri, and T. Mendes, Braz. J. Phys. 37, 219 (2007). [14] A. Cucchieri and T. Mendes, Phys. Rev. D 81, 01600(2010). [15] E.-M. Ilgenfritz, C. Menz,M.Muller-Preussker, A. Schiller, and A. Sternbeck, Phys. Rev. D 83, 054506 (2011). [16] I. L. Bogolubsky, E.-M. Ilgenfritz, M. Muller Preussker, and A. Sternbeck, Proc. Sci., LAT 2009 (2009) 237. [17] O. Oliveira and P. Bicudo, J. Phys. G 38, 045003 (2011). [18] O. Oliveira, P. J. Silva, and P. Bicudo, Proc. Sci., FACESQCD (2010) 009. [19] R. Alkofer, C. S. Fischer, and F. J. Llanes-Estrada, Phys. Lett. B 611, 279 (2005); 670, 460(E) (2009). [20] C. S. Fischer and J. M. Pawlowski, Phys. Rev. D 75,025012 (2007). [21] P. Watson and R. Alkofer, Phys. Rev. Lett. 86, 5239(2001). [22] N. Alkofer and R. Alkofer, Phys. Lett. B 702, 158 (2011). [23] L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542(1927). [24] For completeness we note that x ≡ r∕a, with a = a_0(9 π^2∕(128Z))⅓, in terms of the nuclear charge Z and Bohr’s radius a_0, and Ф ≡ rV(r)/(Ze) rescales the Coulomb potential due to the spherically symmetric (though not pointlike) charge distribution. [25] D. Zwanziger, Nucl. Phys. B321, 591 (1989). [26] D. Zwanziger, Phys. Rev. D 65, 094039 (2002). [27] A. Maas, Phys. Lett. B 689, 107 (2010). [28] A. Maas, arXiv:1106.3942. [29] G. Parisi and Y.-s. Wu, Sci. Sin. 24, 483 (1981). [30] A. M. Sudupe and R. F. Alvarez-Estrada, Phys. Lett. 166B, 186 (1986). [31] A. M. Sudupe, Phys. Lett. 167B, 221 (1986). [32] R. F. Alvarez-Estrada and A. M. Sudupe, Phys. Rev. D 37, 2340 (1988). [33] N. Vandersickel and D. Zwanziger, arXiv:1202.1491. [34] D. Zwanziger, Phys. Rev. D 67, 105001 (2003). [35] P. Boucaud, J-P. Leroy, A. L. Yaouanc, J. Micheli, O. Pene, and J. Rodriguez-Quintero, J. High Energy Phys. 06(2008) 012. [36] As a side remark we comment that the disappearance of the scaling solution in four dimensions in the setting of stochastic quantization is perhaps expected because of the analysis of von Smekal et al. [2] since the scaling solution seems to be a feature of ghost-antighost symmetric Faddeev-Popov quantization, and such symmetry is not implemented in the stochastic scheme. [37] R. Alkofer, C. S. Fischer, H. Reinhardt, and L. von Smekal, Phys. Rev. D 68, 045003 (2003). [38] M. Q. Huber, K. Schwenzer, and R. Alkofer, Eur. Phys. J. C 68, 581 (2010). [39] R. Alkofer, M.Q. Huber, V. Mader, and A. Windisch,Proc. Sci., QCD-TNT-II (2011)003. [40] C. S. Fischer and D. Zwanziger, Phys. Rev. D 72, 054005 (2005). [41] A. Cucchieri, A. Maas, and T. Mendes, Comput. Phys. Commun. 180, 215 (2009). [42] A. Cucchieri, T. Mendes, G. M. Nakamura, and E. M. S. Santos, Proc. Sci., FACESQCD (2010) 026. [43] C. S. Fischer, R. Alkofer, T. Dahm, and P. Maris, Phys. Rev. D 70, 073007 (2004). [44] D. Atkinson and J. C. R. Bloch, Phys. Rev. D 58, 094036 (1998). [45] J. M. Pawlowski, D. Spielmann, and I.-O. Stamatescu, Nucl. Phys. B830, 291 (2010). [46] H. Aiso, J. Fromm, M. Fukuda, T. Iwamiya, A. Nakamura,M. Stingl, and M. Yoshida, Nucl. Phys. B, Proc. Suppl.53,570 (1997). [47] A. Weber, J. Phys. Conf. Ser. 378, 012042 (2012). [48] J. Berges, Phys. Rev. D 70, 105010 (2004). [49] A. Maas, Phys. Rev. D 79, 014505 (2009). [50] J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga, arXiv:1203.6543.
dspace.entity.typePublication
relation.isAuthorOfPublication6290fe55-04e6-4532-91e6-1df735bdbdca
relation.isAuthorOfPublication.latestForDiscovery6290fe55-04e6-4532-91e6-1df735bdbdca

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Llanes-Estrada_FJ02libre.pdf
Size:
412.66 KB
Format:
Adobe Portable Document Format

Collections