Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Renormalized entropy solutions of scalar conservation laws with boundary condition

dc.contributor.authorCarrillo Menéndez, José
dc.contributor.authorWittbold, Petra
dc.date.accessioned2023-06-20T16:53:26Z
dc.date.available2023-06-20T16:53:26Z
dc.date.issued2002-10
dc.description.abstractWe study an initial boundary value problem for a scalar conservation law u(t) + div Phi(u) = f on a bounded domain. Existence and uniqueness of a renormalized entropy solution is established for general L-1-data, Phi is an element ofC(R, R-N
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15576
dc.identifier.doi10.1006/jdeq.2002.4179
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022039602941793
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57343
dc.issue.number2
dc.journal.titleJournal of differential equations
dc.language.isoeng
dc.page.final160
dc.page.initial137
dc.publisherElsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordconservation law
dc.subject.keywordboundary condition
dc.subject.keywordL1-theory
dc.subject.keywordrenormalized entropy solution
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleRenormalized entropy solutions of scalar conservation laws with boundary condition
dc.typejournal article
dc.volume.number185
dcterms.referencesC. Bardos, A. Y. Leroux, and J. C. Nedelec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations 4 (1979), 1017–1034. Ph. Be´nilan, L. Boccardo, Th. Galloue¨ t, R. Gariepy, M. Pierre, and J.-L. Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), 241–273. Ph. Be´nilan, A. Pazy, and M. G. Crandall, ‘‘Nonlinear Evolution Equations in Banach Spaces,’’ to appear. Ph. Be´nilan, J. Carrillo, and P. Wittbold, Renormalized entropy solutions of scalar conservations laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000), 313–329. D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with L1-data: existence and uniqueness, Proc. Roy. Soc. Edinburgh 127A (1997), 1137-1152. D. Blanchard and H. Redwane, Solutions re´normalise´es d’e´quations paraboliques a` deux nonline´ arite´ s, C.R. Acad. Sci. 319 (1994), 831–835. J. Carrillo, Entropy solutions of nonlinear degenerate problems, Arch. Rational Mech. Anal. 147 (1999), 269–361. J. Carrillo, Conservation laws with discontinuous flux functions and boundary conditions, J. Evol. Equations, in press. J. Carrillo and P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic parabolic problems, J. Differential Equations 156 (1999), 93–121. J. Carrillo and P. Wittbold, Renormalized entropy solutions of nonlinear degenerate problems, in preparation. J. Carrillo and P. Wittbold, Conservation laws with general boundary conditions, in preparation. G. Dal Maso, F. Murat, L. Orsina, and A. Prignet, Renormalized solutions of elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 741–809. R. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), 223–270. R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. 130 (1989), 321–366. S. N. Kruzhkov, Generalized solutions of the Cauchy problem in the large for first-order nonlinear equations, Soviet Math. Dokl. 10 (1969), 785–788. S. N. Kruzhkov, First-order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 217–243. F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Publ. Laboratoire d’Analyse Nume´rique, Univ. Paris 6, R 93023, 1993. RENORMALIZED ENTROPY SOLUTIONS 159 F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Se´r. I 322 (1996), 729–734. A. Szepessy, Measure-valued solutions of scalar conservation laws with boundary conditions, Arch. Rational Mech. Anal. 107 (1989), 182–193. G. Vallet, Dirichlet problem for a nonlinear conservation law, Rev. Mat. Compl. XIII (2000), 231–250.
dspace.entity.typePublication
relation.isAuthorOfPublication48ac980d-beb1-40b0-acec-caec3a109b1c
relation.isAuthorOfPublication.latestForDiscovery48ac980d-beb1-40b0-acec-caec3a109b1c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carrillo03.pdf
Size:
218.94 KB
Format:
Adobe Portable Document Format

Collections