Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Application of Graph Theory and Automata Modeling for the Study of the Evolution of Metabolic Pathways with Glycolysis and Krebs Cycle as Case Studies

dc.contributor.authorMorenas Mateos, Carlos de Las
dc.contributor.authorLahoz Beltra, Rafael
dc.date.accessioned2024-05-14T11:17:42Z
dc.date.available2024-05-14T11:17:42Z
dc.date.issued2023-05-28
dc.description.abstractToday, graph theory represents one of the most important modeling techniques in biology. One of the most important applications is in the study of metabolic networks. During metabolism, a set of sequential biochemical reactions takes place, which convert one or more molecules into one or more final products. In a biochemical reaction, the transformation of one metabolite into the next requires a class of proteins called enzymes that are responsible for catalyzing the reaction. Whether by applying differential equations or automata theory, it is not easy to explain how the evolution of metabolic networks could have taken place within living organisms. Obviously, in the past, the assembly of biochemical reactions into a metabolic network depended on the independent evolution of the enzymes involved in the isolated biochemical reactions. In this work, a simulation model is presented where enzymes are modeled as automata, and their evolution is simulated with a genetic algorithm. This protocol is applied to the evolution of glycolysis and the Krebs cycle, two of the most important metabolic networks for the survival of organisms. The results obtained show how Darwinian evolution is able to optimize a biological network, such as in the case of glycolysis and Krebs metabolic networks.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationDe Las Morenas Mateos, C.; Lahoz-Beltra, R. Application of Graph Theory and Automata Modeling for the Study of the Evolution of Metabolic Pathways with Glycolysis and Krebs Cycle as Case Studies. Computation 2023, 11, 107. https://doi.org/10.3390/ computation11060107
dc.identifier.doi10.3390/ computation11060107
dc.identifier.essn2079-3197
dc.identifier.officialurlhttps://doi.org/10.3390/computation11060107
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104009
dc.issue.number6
dc.journal.titleComputation
dc.language.isoeng
dc.page.final21
dc.page.initial1
dc.publisherMDPI
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu519.17:577.1
dc.subject.keywordEvolution of metabolic networks
dc.subject.keywordGlycolysis
dc.subject.keywordKrebs cycle
dc.subject.keywordEnzyme evolution
dc.subject.keywordElectronic enzyme
dc.subject.keywordEvolutionary graph theory
dc.subject.ucmBiomatemáticas
dc.subject.ucmBioquímica (Biología)
dc.subject.unesco2404 Biomatemáticas
dc.subject.unesco2403 Bioquímica
dc.titleApplication of Graph Theory and Automata Modeling for the Study of the Evolution of Metabolic Pathways with Glycolysis and Krebs Cycle as Case Studies
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication1919b0e6-ce49-4da1-8d83-5f644e22454c
relation.isAuthorOfPublication.latestForDiscovery1919b0e6-ce49-4da1-8d83-5f644e22454c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morenas , Carlos de las et al. 2023. Application of Graph Theory and Automata Modeling....pdf
Size:
4.45 MB
Format:
Adobe Portable Document Format

Collections