Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uncertainty quantification and predictability of wind speed over the Iberian Peninsula

dc.contributor.authorFernández González, S.
dc.contributor.authorMartín, M. L.
dc.contributor.authorMerino, A.
dc.contributor.authorSánchez Roldán, José Luis
dc.contributor.authorValero Rodríguez, Francisco
dc.date.accessioned2023-06-17T21:57:37Z
dc.date.available2023-06-17T21:57:37Z
dc.date.issued2017-04-16
dc.description© 2017 American Geophysical Union. This work was partially supported by research projects METEORISK (RTC-2014-1872-5), CGL2011-25327, AYA2011-29967-C05-02, PCIN-2014-013-C07-04 (UE ERA-NET Plus NEWA Project), ESP2013-47816-C4-4-P, CGL2010-15930, and CGL2016-78702, and by the Instituto de Matemática Interdisciplinar (IMI) of the Universidad Complutense. Special thanks are due to Roberto Weigand, Steven Hunter, and Analisa Weston. The authors also thank the Deutscher Wetterdienst (DWD) and European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the gridded daily mean near-surface (10 m) wind speed for Europe (DWD), EPS, and ERA-Interim databases (ECMWF). To request the data, please contact S. Fernández González (sefern04@ucm.es).
dc.description.abstractDuring recent decades, the use of probabilistic forecasting methods has increased markedly. However, these predictions still need improvement in uncertainty quantification and predictability analysis. For this reason, the main aim of this paper is to develop tools for quantifying uncertainty and predictability of wind speed over the Iberian Peninsula. To achieve this goal, several spread indexes extracted from an ensemble prediction system are defined in this paper. Subsequently, these indexes were evaluated with the aim of selecting the most appropriate for the characterization of uncertainty associated to the forecasting. Selection is based on comparison of the average magnitude of ensemble spread (ES) and mean absolute percentage error (MAPE). MAPE is estimated by comparing the ensemble mean with wind speed values from different databases. Later, correlation between MAPE and ES was evaluated. Furthermore, probability distribution functions (PDFs) of spread indexes are analyzed to select the index with greater similarity to MAPE PDFs. Then, the spread index selected as optimal is used to carry out a spatiotemporal analysis of model uncertainty in wind forecasting. The results indicate that mountainous regions and the Mediterranean coast are characterized by strong uncertainty, and the spread increases more rapidly in areas affected by strong winds. Finally, a predictability index is proposed for obtaining a tool capable of providing information on whether the predictability is higher or lower than average. The applications developed may be useful in the forecasting of wind potential several days in advance, with substantial importance for estimating wind energy production.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipInstituto de Matemática Interdisciplinar (IMI)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/43078
dc.identifier.doi10.1002/2017JD026533
dc.identifier.issn2169-897X
dc.identifier.officialurlhttp://dx.doi.org/10.1002/2017JD026533
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17849
dc.issue.number7
dc.journal.titleJournal of geophysical research-atmospheres
dc.language.isoeng
dc.page.final3890
dc.page.initial3877
dc.publisherAmerican Geophysical Union
dc.relation.projectIDMETEORISK (RTC-2014-1872-5)
dc.relation.projectIDCGL2011-25327
dc.relation.projectIDAYA2011-29967-C05-02
dc.relation.projectIDPCIN-2014-013-C07-04
dc.relation.projectIDESP2013-47816-C4-4-P
dc.relation.projectIDCGL2010-15930
dc.relation.projectIDCGL2016-78702
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordEnsemble prediction system
dc.subject.keywordSpread-error relationship
dc.subject.keywordData assimilation system
dc.subject.keywordModel output statistics
dc.subject.keywordKalman filter
dc.subject.keywordWeather forecasts
dc.subject.keywordVariability
dc.subject.keywordMethodology
dc.subject.keywordReliability
dc.subject.keywordRegression
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleUncertainty quantification and predictability of wind speed over the Iberian Peninsula
dc.typejournal article
dc.volume.number122
dspace.entity.typePublication
relation.isAuthorOfPublicatione68a7a2b-efd9-44c0-aec9-4920164379b1
relation.isAuthorOfPublication552fa01a-13cf-4384-a0fa-468914cc2b06
relation.isAuthorOfPublication.latestForDiscovery552fa01a-13cf-4384-a0fa-468914cc2b06

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
valerorodriguez50libre (embargar hasta 1-10-2017).pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format

Collections