On the invariants of some solvable rigid Lie algebras

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
We determine fundamental systems of invariants for complex solvable rigid Lie algebras having nonsplit nilradicals of characteristic sequence (3, 1, .., 1), these algebras being the natural followers of solvable algebras having Heisenberg nilradicals. A special case of this allows us to obtain a criterion to determine the number of functionally independent invariants of rank one subalgebras of (real or complex) solvable Lie algebras. Finally, we give examples of the inverse procedure, obtaining fundamental systems of an algebra starting from rank one subalgebras
UCM subjects
Unesco subjects
Ancochea J M and Campoamor R 2001 Comm. Algebra 29 427 Ancochea J M and Campoamor R 2002 J. Pure Appl. Alg. 170 1 Ancochea J M and Goze M 1989 Publ. Math. Univ. Paris VII 31 285 Beltrametti E G and Blasi A 1966 Phys. Lett. 20 62 Campoamor-Stursberg R 2002 Alg. Groups Geom., to appear Campoamor-Stursberg R 2002 Acta Math. Univ. Comen. 71 51 Carles R 1984 Ann. Inst. Fourier 34 65 Gell-Mann M 1962 Phys. Rev. 125 1067 Goze M and Ancochea J M 1992 Comm. Algebra 20 875 Levy-Leblond J M 1972 Groups Theory and its Applications ed E Loebl (New York: Springer) Martin Haft H 1997 MPI-ThP 97-54 Mirma R 1968 J. Math. Phys. 9 47 Ndogmo J C and Winternitz P 1994 J. Phys. A: Math. Gen. 27 2787 Ndogmo J C 2000 J. Phys. A: Math. Gen. 33 2273 Olver P 1986 Applications of Lie groups to Differential Equations (New York: Springer) Patera J, Sharp R T and Winternitz P 1976 J. Math. Phys. 17 986 Racah G 1950 Rend. Lincei 8 108 Roman P, Aghassi J J and Huddleston P L 1972 J. Math. Phys. 13 1852 Rubin J and Winternitz P 1993 J. Phys. A: Math. Gen. 26 1123