Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Structure of polytopes associated to non-additive measures via toric ideals and Gröbner bases

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2025

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature Link
Citations
Google Scholar

Citation

García-Segador, P., & Miranda, P. Structure of polytopes associated to non-additive measures via toric ideals and Gröbner bases: P. García-Segador, P. Miranda. Theory and Decision, 2025;1-29.

Abstract

In this paper we study the geometrical structure of some polytopes appearing in the study of families of non-additive measures using toric ideals and Gröbner bases. Toric ideals and Gröbner bases are tools appearing in Computational Algebra when dealing with ideals in the ring of polynomials in several variables, and they have been applied for obtaining both the faces and a triangulation of a polytope whose vertices are integer-valued. In this paper we provide examples on which we compare these tools with other ones: order polytopes and the polytope of 2-additive measures. Finally, we derive the combinatorial structure of the subfamily of 2-additive k-ary capacities.

Research Projects

Organizational Units

Journal Issue

Description

Acuerdos Transfomativos CRUE 2025

UCM subjects

Unesco subjects

Keywords

Collections