Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Scale-free chaos in the 2D harmonically confined Vicsek model

dc.contributor.authorGonzález Albaladejo, Rafael
dc.contributor.authorBonilla, Luis L.
dc.date.accessioned2024-05-05T18:08:59Z
dc.date.available2024-05-05T18:08:59Z
dc.date.issued2023-12
dc.description2023 Descuento MDPI
dc.description.abstractAnimal motion and flocking are ubiquitous nonequilibrium phenomena that are often studied within active matter. In examples such as insect swarms, macroscopic quantities exhibit power laws with measurable critical exponents and ideas from phase transitions and statistical mechanics have been explored to explain them. The widely used Vicsek model with periodic boundary conditions has an ordering phase transition but the corresponding homogeneous ordered or disordered phases are different from observations of natural swarms. If a harmonic potential (instead of a periodic box) is used to confine particles, then the numerical simulations of the Vicsek model display periodic, quasiperiodic, and chaotic attractors. The latter are scale-free on critical curves that produce power laws and critical exponents. Here, we investigate the scale-free chaos phase transition in two space dimensions. We show that the shape of the chaotic swarm on the critical curve reflects the split between the core and the vapor of insects observed in midge swarms and that the dynamic correlation function collapses only for a finite interval of small scaled times. We explain the algorithms used to calculate the largest Lyapunov exponents, the static and dynamic critical exponents, and compare them to those of the three-dimensional model.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Carlos III
dc.description.statuspub
dc.identifier.citationGonzález-Albaladejo, R.; Bonilla, L.L. Scale-Free Chaos in the 2D Harmonically Confined Vicsek Model. Entropy 2023, 25, 1644. https://doi.org/10.3390/e25121644
dc.identifier.doi10.3390/e25121644
dc.identifier.essn1099-4300
dc.identifier.officialurlhttps://doi.org/10.3390/e25121644
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103727
dc.issue.number12
dc.journal.titleEntropy
dc.language.isoeng
dc.page.final1644-19
dc.page.initial1644-1
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112796RB-C21/ES/METODOS Y MODELOS MATEMATICOS PARA APLICACIONES BIOMEDICAS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112796RB-C22/ES/MODELOS Y METODOS MATEMATICOS PARA APLICACIONES BIOMEDICAS/
dc.relation.projectIDPRE2018-083807
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu51
dc.subject.cdu517
dc.subject.keywordChaos
dc.subject.keywordPhase transition
dc.subject.keywordCritical exponents
dc.subject.keywordHarmonically confined Vicsek model
dc.subject.keywordScale-free chaos phase transition
dc.subject.keywordInsect swarms
dc.subject.keywordLargest Lyapunov exponent
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleScale-free chaos in the 2D harmonically confined Vicsek model
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number25
dspace.entity.typePublication
relation.isAuthorOfPublication12246f02-0355-47c7-a7a6-e96ad11687bd
relation.isAuthorOfPublication.latestForDiscovery12246f02-0355-47c7-a7a6-e96ad11687bd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-25-01644.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format

Collections