Entanglement and the three-dimensionality of the Bloch ball

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
We consider a very natural generalization of quantum theory by letting the dimension of the Bloch ball be not necessarily three. We analyze bipartite state spaces where each of the components has a d-dimensional Euclidean ball as state space. In addition to this, we impose two very natural assumptions: the continuity and reversibility of dynamics and the possibility of characterizing bipartite states by local measurements. We classify all these bipartite state spaces and prove that, except for the quantum twoqubit state space, none of them contains entangled states. Equivalently, in any of these non-quantum theories, interacting dynamics is impossible. This result reveals that "existence of entanglement" is the requirement with minimal logical content which singles out quantum theory from our family of theories
1 G. Birkhoff, J. von Neumann, The Logic of Quantum Mechanics, Annals of Mathematics, 37, 823 (1936). 2 G. W. Mackey, The mathematical foundations of quantum mechanics, (W. A. Benjamin Inc, New York, 1963). 3 E. M. Alfsen, F. W. Shultz, Geometry of state spaces of operator algebras, Birkhäuser, Boston (2003). 4 L. Hardy, Quantum theory from five reasonable axioms, arXiv:quant-ph/0101012. 5 B. Daki´c, C. Brukner, ˇ Quantum Theory and Beyond: Is Entanglement Special?, arXiv:0911.0695v1. 6 Ll. Masanes, M. P. Müller, A derivation of quantum theory from physical requirements, New J. Phys. 13, 63001 (2011). arXiv:1004.1483. 7 L. Hardy, Reformulating and Reconstructing Quantum Theory, arXiv:1104.2066. 8 G. Chiribella, G. M. D’Ariano, P. Perinotti, Informational derivation of Quantum Theory, Phys. Rev. A 84, 012311 (2011), arXiv:1011.6451 9 A. Gleason, J. Math. Mech. 6, 885 (1957). 10 S. Weinberg, Ann. Phys. NY 194, 336 (1989). 11 N. Gisin, Weinberg’s non-linear quantum mechanics and supraluminal communications, Phys. Lett. A 143 1–2 (1990). 12 G. Chiribella, G. M. D’Ariano, P. Perinotti, Probabilistic theories with purification, Phys. Rev. A 81, 062348 (2010). arXiv:0908.1583 13 H. Barnum, A. Wilce, Information processing in convex operational theories, DCM/QPL (Oxford University 2008), arXiv:0908.2352v1. 14 H. Barnum, C. P. Gaebler, A. Wilce, Ensemble Steering, Weak Self-Duality, and the Structure of Probabilistic Theories, arXiv:0912.5532. 15 J. Barrett, Information processing in generalized probabilistic theories, arXiv:quantph/0508211. 16 D. Gross, M. M¨uller, R. Colbeck, O. C. O. Dahlsten, All reversible dynamics in maximally non-local theories are trivial, Phys. Rev. Lett. 104, 080402 (2010), arXiv:0910.1840v2. 17 M. Paw lowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Zukowski, ˙ A new physical principle: Information Causality, Nature 461, 1101 (2009), arXiv:0905.2292v3. 18 Ll. Masanes, M. P. Müller, R. Augusiak, D. Pérez-García, Existence of an information unit as a postulate of quantum theory, PNAS vol 110 no 41 page 16373 (2013), arXiv:1208.0493. 19 O. C. O. Dahlsten, A. J. P. Garner, V. Vedral, Fundamental Uncertainty as a Consequence of Locality, arXiv:1206.5702. 20 C. Pfister, S. Wehner, If no information gain implies no disturbance, then any discrete physical theory is classical, arXiv:1210.0194. 21 G. de la Torre, Ll. Masanes, A. J. Short, M. P. Müller, Deriving quantum theory from its local structure and reversibility, Phys. Rev. Lett. 109, 090403 (2012) 22 S. Popescu, D. Rohrlich, Causality and Nonlocality as Axioms for Quantum Mechanics, Proceedings of the Symposium on Causality and Locality in Modern Physics and Astronomy (York University, Toronto, 1997), arXiv:quant-ph/9709026v2. 23 B. Mielnik, Generalized Quantum Mechanics, Commun. Math. Phys. 37, 221-256 (1974). 24 R. Sanyal, F. Sottile, B. Sturmfels, Orbitopes, arXiv:0911.5436. 25 B. Daki´c and C. Brukner, The classical limit of a physical theory and the dimensionality of space, arXiv:1307.3984. 26 M. P. Mueller, Ll. Masanes, Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15, 053040 (2013), arXiv:1206.0630. 27 R. T. Rockafellar, Convex Analysis, Princeton University Press (1970). 28 A. Baker, Matrix Groups, An Introduction to Lie Group Theory, Springer-Verlag London Limited (2006). 29 B. Simon, Representations of Finite and Compact Groups, Graduate Studies in Mathematics, vol. 10, American Mathematical Society (1996). 30 D. Montgomery and H. Samelson, Transformation groups of spheres, Annals of Math. 44, 454-470 (1943). 31 A. Borel, Some remarks about Lie groups transitive on spheres and tori, Bull. A.M.S. 55, 580-587 (1949). 32 W. Fulton, J. Harris, Representation Theory, Graduate texts in mathematics, Springer (2004). 33 R. A. Horn, C. R. Johnson; Matrix Analysis; Cambridge University Press (1985). 34 E. Meinrenken; Symplectic Geometry, Lecture Notes, University of Toronto. 35 R. Arenas, Constructing a Matrix Representation of the Lie Group G2, Harvey Mudd College (2005).