Artificial intelligence for dental implant classification and peri-implant pathology identification in 2D radiographs: A systematic review

dc.contributor.authorBonfanti-Gris, Mónica
dc.contributor.authorRuales, Edwin
dc.contributor.authorSalido Rodríguez-Manzaneque, María Paz
dc.contributor.authorMartínez Rus, Francisco
dc.contributor.authorMutlu Özcan
dc.contributor.authorPradíes Ramiro, Guillermo Jesús
dc.coverage.spatialeast=-3.725823; north=40.442435; name=Pl. de Ramón y Cajal, 3, Moncloa - Aravaca, 28040 Madrid, España
dc.date.accessioned2026-01-13T10:04:09Z
dc.date.available2026-01-13T10:04:09Z
dc.date.issued2024-12-15
dc.description.abstractObjective: This systematic review aimed to summarize and evaluate the available information regarding the performance of artificial intelligence on dental implant classification and peri-implant pathology identification in 2D radiographs. Data sources: Electronic databases (Medline, Embase, and Cochrane) were searched up to September 2024 for relevant observational studies and both randomized and controlled clinical trials. The search was limited to studies published in English from the last 7 years. Two reviewers independently conducted both study selection and data extraction. Risk of bias assessment was also performed individually by both operators using the Quality Assessment Diagnostic Tool (QUADAS-2). Study selection: Of the 1,465 records identified, 29 references were selected to perform qualitative analysis. The study characteristics were tabulated in a self-designed table. QUADAS-2 tool identified 10 and 15 studies to respectively have a high and an unclear risk of bias, while only four were categorized as low risk of bias. Overall, accuracy rates for dental implant classification ranged from 67 % to 99 %. Peri-implant pathology identification showed results with accuracy detection rates over 78,6 %. Conclusions: While AI-based models, particularly convolutional neural networks, have shown high accuracy in dental implant classification and peri-implant pathology detection, several limitations must be addressed before widespread clinical application. More advanced AI techniques, such as Federated Learning should be explored to improve the generalizability and efficiency of these models in clinical practice. Clinical significance: AI-based models offer can and clinicians to accurately classify unknown dental implants and enable early detection of peri-implantitis, improving patient outcomes and streamline treatment planning.
dc.description.departmentDepto. de Odontología Conservadora y Prótesis
dc.description.facultyFac. de Odontología
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBonfanti-Gris M, Ruales E, Salido MP, Martinez-Rus F, Özcan M, Pradies G. Artificial intelligence for dental implant classification and peri-implant pathology identification in 2D radiographs: A systematic review. J Dent. 2025 Feb;153:105533. doi: 10.1016/j.jdent.2024.105533
dc.identifier.doi10.1016/j.jdent.2024.105533
dc.identifier.essn1879-176X
dc.identifier.issn0300-5712
dc.identifier.officialurlhttps://doi.org/10.1016/j.jdent.2024.105533
dc.identifier.pmid39681182
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0300571224007024?via%3Dihub
dc.identifier.relatedurlhttps://pubmed.ncbi.nlm.nih.gov/39681182/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130007
dc.journal.titleJournal of dentistry
dc.language.isoeng
dc.page.initial105533
dc.publisherElsevier
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu[616.31-073.75:616.314-089.843]:004.83
dc.subject.keywordArtificial Intelligence
dc.subject.keywordDeep learning
dc.subject.keywordDental implant
dc.subject.keywordObject detection
dc.subject.keywordPanoramic radiograph
dc.subject.keywordPeriapical radiograph
dc.subject.keywordPeriimplantitis
dc.subject.ucmOdontología (Odontología)
dc.subject.ucmImplantes dentales
dc.subject.ucmDiagnóstico por imagen y medicina nuclear
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmGestión de la información
dc.subject.ucmAprendizaje
dc.subject.unesco3213.13 Ortodoncia-Estomatología
dc.titleArtificial intelligence for dental implant classification and peri-implant pathology identification in 2D radiographs: A systematic review
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number153
dspace.entity.typePublication
relation.isAuthorOfPublicationc6f6ec8c-105a-4334-a0e1-9404f1e769b8
relation.isAuthorOfPublicationeddef645-1a65-4096-8122-07150050e03c
relation.isAuthorOfPublication1f9c3f08-3382-454f-8c0e-b5de6a5d271b
relation.isAuthorOfPublication.latestForDiscoveryc6f6ec8c-105a-4334-a0e1-9404f1e769b8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
J Dent. 2025 Feb;153:105533.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format

Collections