Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Learning Perfectly Secure Cryptography to Protect Communications with Adversarial Neural Cryptography

dc.contributor.authorCoutinho, Murilo
dc.contributor.authorde Oliveira Albuquerque, Robson
dc.contributor.authorBorges, Fábio
dc.contributor.authorGarcía Villalba, Luis Javier
dc.contributor.authorKim, Tai-Hoon
dc.date.accessioned2023-06-17T12:38:47Z
dc.date.available2023-06-17T12:38:47Z
dc.date.issued2018-04-24
dc.description.abstractResearches in Artificial Intelligence (AI) have achieved many important breakthroughs, especially in recent years. In some cases, AI learns alone from scratch and performs human tasks faster and better than humans. With the recent advances in AI, it is natural to wonder whether Artificial Neural Networks will be used to successfully create or break cryptographic algorithms. Bibliographic review shows the main approach to this problem have been addressed throughout complex Neural Networks, but without understanding or proving the security of the generated model. This paper presents an analysis of the security of cryptographic algorithms generated by a new technique called Adversarial Neural Cryptography (ANC). Using the proposed network, we show limitations and directions to improve the current approach of ANC. Training the proposed Artificial Neural Network with the improved model of ANC, we show that artificially intelligent agents can learn the unbreakable One-Time Pad (OTP) algorithm, without human knowledge, to communicate securely through an insecure communication channel. This paper shows in which conditions an AI agent can learn a secure encryption scheme. However, it also shows that, without a stronger adversary, it is more likely to obtain an insecure one.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67669
dc.identifier.doi10.3390/s18051306
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s18051306
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/18/5/1306
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12693
dc.issue.number5
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial1306
dc.publisherMDPI
dc.relation.projectIDSELFNET (671672)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordAdversarial Neural Cryptography
dc.subject.keywordArtificial Intelligence
dc.subject.keywordChosen-Plaintext Attack
dc.subject.keywordCryptography
dc.subject.keywordNeural Network
dc.subject.keywordOne-Time Pad
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmSeguridad informática
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleLearning Perfectly Secure Cryptography to Protect Communications with Adversarial Neural Cryptography
dc.typejournal article
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscovery0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2e02f7fff231795523038316c881dd15f5a4.pdf
Size:
841.07 KB
Format:
Adobe Portable Document Format

Collections